

Mike Adel, March 2014

Outline

The pupil

- Animal kingdom
- Optics
- Pupil imaging
 - Optical architecture
 - The Fourier domain
- Overlay metrology by pupil imaging
 - What is overlay?
 - Target architecture
 - Quantification

Evolution has generated diversity in pupil structure.

The pupil means many things

Exposure vs Depth of field

What happens when we put the image sensor in the pupil?

Field imaging architecture

confidential

Pupil imaging architecture

confidential

What is overlay metrology and why is it important?

Very Tight (Ångstrom level) Position Control

Overlay metrology is enabled by quantification of symmetry breaking.

Pupil imaging

It's all about diffraction

 $dSin\theta = m\lambda$

For zero offset, first orders are symmetric.

K:\MTD\REPORTS\ 1st_order_testing_FEB2014\CTDrev4\Measured\ Pitch600nm_1to1\S\ AROL_X1_121013.192017.778.api

With 4 cells, overlay can be measured in x & y

Summary

The *pupil* has many meanings and uses in optics.

The pupil is also a location in the optical path which enables the image to be viewed in the *Fourier domain*.

Overlay metrology is enabled by pupil imaging of overlaid periodic structures.

I₀

 $-F_0 = F_0$

 Translational offsets between periodic structures are required in order to quantify symmetry breaking in the pupil image.

Thank You

Acknowledgements: Thanks to Mark Ghinovker for DFTs...

Shorter wavelength = higher resolution Evolution of lithography light sources

