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The world of visual illustrations 

Science Diagrams Maps 3d visualizations Infographics 

… and many more 



Diagrams afford deep opportunities for reasoning 

Which animal does the Bobcat eat ? 

What is the effect on the population of 

Bobcats if the population of squirrel 

decreased ? 



Syntactic Parsing Semantic Interpretation 

Detect Constituents 

   Objects, Text, Elements 

Detect Relationships 

   Label, Connections 

Motion 

Consumption 

Phase change 



Syntactic Parsing 

Semantic Interpretation 

Deep Sequential Diagram Parser 

Structured Set Matching Networks 

Diagram Question Answering 

Bidirectional Attention Flow 

Textbook Question Answering 



The language of diagrams 

Syntactic decomposition of a diagram 

The language of graphics 
A framework for the analysis of syntax and meaning  

in maps, charts and diagrams 

 

J.von Engelhardt 

Prior work in the graphics community to 

represent visual illustrations 

We build upon Engelhardt’s 

representation of graphic 
Composite Graphic 

Graphic Space 

Constituents 

Constituent-Space 

Relationships 

Inter-Constituent 

Relationships 



Generating candidates 

Constituents 

Segment Proposals 
Convolutional Neural Networks 

Inter-Constituent 

Relationships 

Relationship Proposals Random Forest Classifiers 

Constituent-Space 

Relationships 

Kernel Density Estimates 



Deep Sequential Diagram Parser 
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LSTMs require a lot of training data! 

 

For each training image: 

Sample 100s of relationship sequences 

Sample without replacement 

Relationship score as sampling weight 

 

Test time: 

Relationships sorted by proposal scores 
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Understanding diagrams can be partially addressed by matching 

Scarce training data motivates a one-shot scenario 

Must generalize to unseen categories 

     Cannot simply learn a classifier for each part 

 

Absence of color and texture 

     Local cues ambiguous 

 

Pose variations between images  

     Absolute position ambiguous 

 

Must enforce a 1:1 matching between parts 



Structured Set Matching Network 
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5 x 5 appearance matching scores

Factor Graph for the Structured Prediction Appearance 
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Results 



Semantic Interpretation 

in the context of question answering 



Neural Models for Machine Comprehension 

Context Query 
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Attend over Diagram Parse Graph 

LSTM LSTM LSTM LSTM

LSTM
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!"

Each question-answer pair into a statement 

Facts from a DPG 

Embed the question answer pair in a d-dim space 

Embed each fact into the same space 

Attention module learns to attend to the relevant fact, given a question 



Results 

The	diagram	depicts
The	life	cycle	of

a)	frog	 0.924
b)	bird 0.02
c)	insecticide 0.054
d)	insect 0.002

How	many	stages	of
Growth	does	the	diagram
Feature?

a)	4	 0.924
b)	2 0.02
c)	3 0.054
d)	1 0.002

What	comes	before
Second	feed?

a)	digestion	 0.0
b)	First	feed 0.15
c)	indigestion 0.0
d)	oviposition 0.85

Method Train Set Accuracy 

Q + I (VQA) VQA 29.06 

Q AI2D 33.02 

Q + I (VQA) AI2D 32.90 

Q + OCR AI2D 34.21 

Q + I + OCR AI2D 34.02 

DQA-Net AI2D 38.47 



Neural Attention 

Some characteristics of past attention models: 
 
Attention weights used to summarize the modality into a single vector 

Attended vectors allowed to flow through to the modelling layer 

 

They are often temporally dynamic (attention at t affects attention at t+1) 

Our attention mechanism is memory-less 

 

They are usually uni-directional 

We use bi-directional attention: Query-to-context & Context-to-query 



Bidirectional Attention Flow (BiDAF) 
Model 



Bidirectional Attention Flow (BiDAF) 
Model 



Bidirectional Attention Flow (BiDAF) 
Model 



Bidirectional Attention Flow (BiDAF) 
Model 



Machine Comprehension Task 

Over 100,000 question-answer tuples 



Visualizations: Word vs Phrase Spaces  



BiDAF Demo 
 

https://allenai.github.io/bi-att-flow/ 



Textbook QA Challenge 



Complex parsing and reasoning 



Textbook QA Challenge a part of 

Workshop on Visual Understanding Across Modalities  

@ CVPR 2017 
 

http://vuchallenge.org 

 
Prizes sponsored by AI2 



Newtonian Image Understanding 

What happens if …? 

Unfolding the dynamics of objects in static images 

Predicting the effect of forces in images 



Unfolding Object Dynamics Predicting Effects of Forces 

What happens if I push this cup ? 



Spectrum of approaches 

Predicted trajectory 

Let neural networks figure it out! Estimate friction, mass, etc. 

Then solve some equations. 



Spectrum of approaches 

Let neural networks figure it out! Estimate friction, mass, etc. 

Then solve some equations. 
Intermediate Representation 

Game Engine 







More results 



XNOR-Net 

Image Classification using Binary CNNs 



Convolutional Neural Networks 

… … 
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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-

lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored

out from the optimization and the optimal solutions can beachieved from equation 2 as

follow

C⇤= sign(Y ) = sign(X T ) sign(W ) = H⇤T
B⇤ (9)

Since |X i |, |W i | are independent, knowing that Y i = X i W i then,

E [|Y i |] = E [|X i ||W i |] = E [|X i |] E [|W i |] therefore,

γ⇤=

P
|Y i |

n
=

P
|X i ||W i |

n
⇡

✓
1

n
kX k` 1

◆✓
1

n
kW k` 1

◆

= β⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (wherewi n w, hi n

h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing thescaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Once weobtained the scaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
GPU ! 

+  −  × 
Network # operations Inference 

(CPU) 

AlexNet 1.5B FLOPs ~3 fps 

VGG 19.6B FLOPs ~0.25 fps 
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Operations Memory Computation 

+  −   ~32x ~2x 
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XNOR 
Bit-count 

~32x ~58x 
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XNOR-NET Demo 
 

On the iPhone! 



Thank you! 
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