

A Simple, Remote, Video Based Breathing Monitor

Nir Regev

Partner of Choice Worldwide

M2M **connected-living** solutions

23+ years serving global service providers

250 professionals

End-to-End: hardware, software and services

Award winning solutions

Local partners worldwide

Manufacturing lines in Israel and Hungary

Main idea

- Track the torso movement through time from the video
- Use this information to estimate the breathing frequency

Motivation

- Complimentary algorithm that can "take over" when facial vid is not available
- Color based and motion based algorithms needs a "good look" at the face of the subject
- Complement other modalities
- Possible applications:
 - Elderly care
 - Baby monitoring

Algorithmic flow

Optical flow tracking

- Lucas-Kanade's Optical flow algorithm will track variations of points on the moving torso through time
- Variation is given both in x and the y axes
- The outcome is different in SNR, and trendy

Assumed model

Notations:

- N is the number of points, thus, 2N "modalities" are present (x, y)
- $i = 0, \dots, 2N 1$ is the modality index
- $k = 0, \cdots K_i 1$ is the sample index
- K_i is i-th modality number of observed samples

Assumed Model – cont.

$$z_i^-(k) = a_i \sin(\omega_b k + \varphi_{b_i}) + v_i^-(k),$$

- ω_b is the unknown breathing angular frequency
- φ_{b_i} is an unknown nuisance parameter
- $v_i^-(k)$ is an additive white Gaussian noise with variance σ^2 and is i.i.d. across modalities and samples.
- Note that the signal level a_i changes across modalities.

Actual Model

$$Z_i(k) = c_i k + d_i + a_i \sin(\omega_b k + \varphi_{b_i}) + v_i(k),$$

- Where c_i and d_i are the trend coefficients for modality i
- Thus, the trend needs to be iteratively estimated and removed to obtain the desired model

Algorithm 1 Recursive Least squares line fitting

RLS a $\frac{1: k \leftarrow 4}{2: n \leftarrow 0}$

▶ wait for the first three samples

- Recurs line pe
- 3: Construct the Vandermonde matrix $H^3 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$
- the trend-

- This tr
- 4: Construct the observation vector $\tilde{\mathbf{z}}^3 = \begin{pmatrix} \tilde{\mathbf{z}}_0 \\ \tilde{\mathbf{z}}_1 \end{pmatrix}$

Size: 2 × 2 ⊳ Size: 2 × 2 or spectral

- estima 7: repeat
- The tree 5: $P^k \leftarrow \left(H^{3^T}H^3\right)^{-1}$ Solve for $\boldsymbol{\theta}$: $\hat{\boldsymbol{\theta}}_{RLS}^k = P^kH^{3^T}\mathbf{z}$.

8:
$$H^k \leftarrow (k, 1)$$

9: $G^k \leftarrow P^k H^{kT} \left(H^K P^k H^{kT} + \alpha \right)^{-1} \triangleright \text{Size: } 1 \times 2$

10:
$$\varepsilon \leftarrow \left(\tilde{\mathbf{z}}_k - H^k \hat{\boldsymbol{\theta}}_{RLS}^k\right)$$

11:
$$\hat{\boldsymbol{\theta}}_{RLS}^{k+1} \leftarrow \hat{\boldsymbol{\theta}}_{RLS}^{k} + G^{k} \varepsilon$$

12:
$$P^{k+1} \leftarrow \frac{1}{2} \left(I_{2\times 2} - G^k H^k \right) P^k$$

13:
$$k \leftarrow k+1$$

14: until no more samples are available

Spectral estimation

- The breathing frequency needs to be estimated real time.
- The frequency resolution should be 1BPM
- ⇒ The signal should be observed for at least 60 seconds
- We need to be faster what to do?

Reformed Pisarenko Harmonic Decomposition

RPHD performance – per modality

Verify the model

- All modalities with frequencies not in the breathing band are discarded
- Once a breathing frequency estimation is done, we need to verify that it adheres to our sinusoidal model
- Thus, a Generalized Likelihood Ratio Test (GLRT) is executed.
- Define two hypotheses:

$$H_0: z_i^-(k) = v_i^-(k)$$

 $H_1: z_i^-(k) = a_i \sin(\omega_b k + \varphi_{b_i}) + v_i^-(k),$

Verify the model – cont.

The GLRT is given by:

$$\frac{1}{\sqrt{K_i}} \sum_{k=0}^{K_i-1} z_i^{-}(k) \left[\sin \omega_b k + \cos \omega_b k\right] \stackrel{>}{<} \gamma_i$$

$$H_0$$

• γ_i is a threshold calculated using the Neyman-Pearson's theorem to keep a fixed false alarm, P_{FA}

$$\gamma_i = -\sigma^2 ln P_{FA}$$

Verify the model – cont.

- All modalities that didn't survive the GLRT are discarded
- All modalities that survived are fed into the fusing algorithm

Fusion algorithm

- At each time instance we have a refined estimation for each modality & its corresponding variance.
- Assumption: the estimation error is a zero mean Gaussian random variable with variance σ_i^2 .
- Thus we have the model

$$\widehat{\omega}_{b_0} = \omega_b + w_0$$

$$\widehat{\omega}_{b_1} = \omega_b + w_1$$

$$\vdots$$

$$\widehat{\omega}_{b_{2N_S-1}} = \omega_b + w_{2N_S-1}$$

Fusion algorithm – cont.

- $w_i \sim N(0, \sigma_i^2)$ and ω_b is the true parameter value
- Putting in a matrix form

$$\widehat{\boldsymbol{\omega}}_b = \mathbf{1}\omega_b + \boldsymbol{w}$$

- where $w \sim N(0, R)$ and $R = diag(\sigma_0^2, \sigma_1^2, \dots, \sigma_{2N_S-1}^2)$
- The solution of this estimation problem in the maximum likelihood sense is given by

$$\widehat{\omega}_{b_{ML}} = (\mathbf{1}^T \mathbf{R}^{-1} \mathbf{1})^{-1} \mathbf{R}^{-1} \mathbf{1}^T \widehat{\omega}_b = \frac{1}{\sum_{i=0}^{2N_s - 1} \frac{1}{\sigma_i^2}} \sum_{i=0}^{2N_s - 1} \frac{\widehat{\omega}_{b_i}}{\sigma_i^2}$$

Experiments

- Tested on two babies and 3 adults using an RBG sensor and an IR sensor during day and night.
- The true breathing rate was counted manually from the video and was divided by the video recording time.
- The maximum error varies from 0.7 to 1 BPM after ten seconds of video.
- However, the algorithm failed in the good points to track step in a setting where the subject was wearing a pattern-less shirt.

Experiments – cont.

TABLE I EXPERIMENTS RESULTS.

Subject gender [m/f]	Subject age [years]	Maximum error - proposed algorithm [BPM]	Maximum error - optimal algorithm [BPM]
m	40	1	0.5
m	50	0.7	0.3
m	30	1	0.4
m	2	1	1
f	0.5	1	1

DEMO - me

DEMO – my colleague

Future work

Sensor fusion with a radar

Thank You

www.essence-grp.com

