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Training models for road scene understanding with automated
ground truth

Dan Levi

With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder
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Agenda

* Road scene understanding

* Acquiring training data with automated ground
truth (AGT)

* Test cases:
* General obstacle detection & classification
* Car pose estimation
* Freespace
* Road segmentation

* Conclusion
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On-board road scene understandlng

Static: Dynamic:
* Road edge * Classified objects (cars,
* Road markings, complex pedestrians, bicycles,
lane understanding animals ...)
* Signs * General obstacles:

e Obstacles: clutter, animals, carts

construction zone cones
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Manual Annotation

The Cityscapes Dataset for Semantic Urban Scene Understanding
[Cordts et al. 2016]

* Time: ~¥60 min per image
e ~1000 annotators
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Computer graphics simulated data

e Photo-realism

* Scenario generation
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Automated ground truth
Cross-sensor learning

Velodyne LIDAR
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AGT for road scene understanding — general setup

“Supervising” sensors

" “Target” sensors

Perquisite: Full alignment and synchronization between sensors
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AGT for road scene understanding: scheme
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Automated ground truth / Cross-sensor learning

1. Solve an “easier” problem
- Run time
- Completeness

2. Promise

- Scalability

- Continuous (un-bounded)
improvement
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AGT for General obstacle detection
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“Supervising”
Sensors:
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Target”
Sensors:
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Task: General obs. Det. \
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StlerNet Monocular obstacle detect|on

Levi, Dan, Noa Garnett, Ethan Fetaya. StixelNet : A Deep
Convolutional Network for Obstacle Detection and Road
Segmentation. In BMVC 2015.
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Object-centric obstacle detection AGT
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Unified network: StixelNet + Object detection +
Object pose estimation

AR+ 5 o
My

Noa Garnett, Shai Silberstein, Shaul Oron, Ethan Fetaya, Uri
Verner, Ariel Ayash, Vlad Goldner, Rafi Cohen, Kobi Horn, Dan
Levi. Real-time category-based and general obstacle detection
for autonomous driving. CVRSUAD Workshop, ICCV2017.
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New general obstacle dataset with fisheye
lens camera

il

L4

#images #instances
(columns)

Kitti--train 6K 5M

Internal- 16K 20M
train

Kitti-test 760 11K
Internal-test 910 19K
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StixelNet2: New network architecture

55D + Pose Lavers
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Results on KITT]
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AGT for Obstacle classification

‘(’Supervising”\ 4 “Target” ) / Task: Obstacle classificatich
Sensors: Sensors: ) e
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AGT for obstacle classification

Image based detection Lidar based verification
E— A - .
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Obstacle classification trained net result: pedestrians
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AGT for car pose estimation
(’Supervising”\ 4 “Target” N/ Task: pose estimation \

- "?‘

Sensors: Sensors:



vlc-record-2017-09-05-15h16m12s-freespace_aptina.avi-.mp4
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AGT for pose estimation

Multi sensor,
temporal object
detection

8 orientation bins pose representation

Dynamic = Static
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Pose estimation

trained with mixed AGT and Manual


vlc-record-2017-09-05-15h19m40s-freespace_kitti_2.avi-.mp4
vlc-record-2017-09-05-15h16m12s-freespace_aptina.avi-.mp4
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Far range general obstacle detection
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“Supervising”
Sensors:

AGT for freespace

~

Target”
Sensors:
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Task: freespace A
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AGT for freespace with 3D beams
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Obstacles vs. Freespace AGT
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Freespace + object detection + car 3D pose
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Freespace + object detection + car 3D pose
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Freespace + object detection + car 3D pose
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Freespace + object detection + car 3D pose
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Freespace + object detection + car 3D pose
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Finetuning from AGT: road segmentation

1. Fine-tune on KITTI Road segmentation (manually labelled)
2. Graph-cut segmentation

3. State-of-the-art accuracy among non-anonymous (94.88% MaxF)
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What's next?

Uncertainty

Correct, improve
AGT through
bootstrapping

Multiple sensors
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Thank you!



