

四小切

Training models for road scene understanding with automated ground truth

Dan Levi

27-1/10

With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder

Agenda

- Road scene understanding
- Acquiring training data with automated ground truth (AGT)
- Test cases:
 - General obstacle detection & classification
 - Car pose estimation
 - Freespace
 - Road segmentation
- Conclusion

On-board road scene understanding

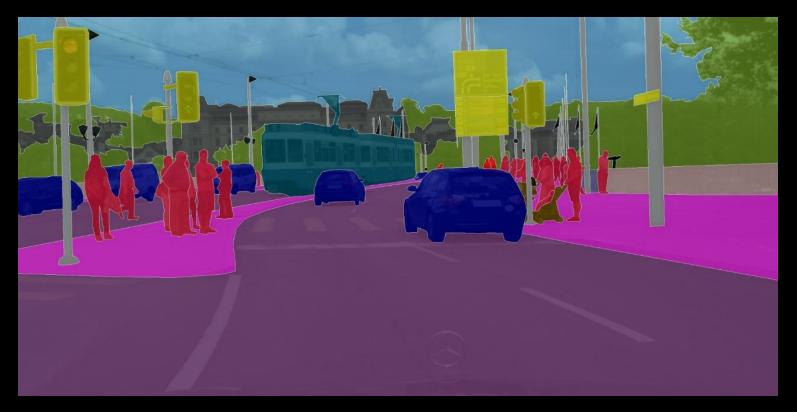
Static:

- Road edge
- Road markings, complex lane understanding
- Signs
- Obstacles: clutter, construction zone cones

Dynamic:

- Classified objects (cars, pedestrians, bicycles, animals ...)
- General obstacles: animals, carts

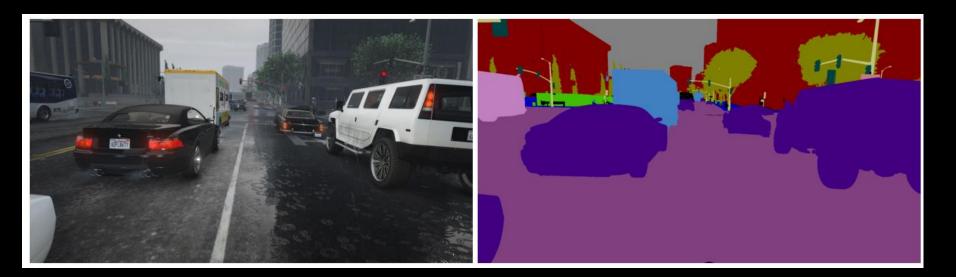
Manual Annotation



The Cityscapes Dataset for Semantic Urban Scene Understanding [Cordts et al. 2016]

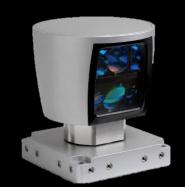
- Time: ~60 min per image
- ~1000 annotators

Computer graphics simulated data



- Photo-realism
- Scenario generation

Automated ground truth(AGT) / Cross-sensor learning



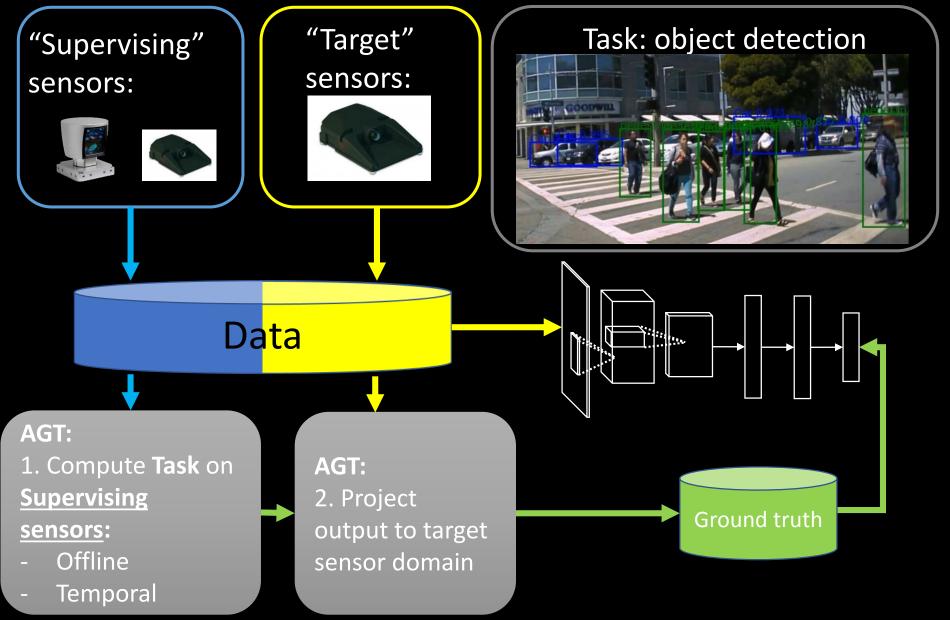
Velodyne LIDAR

AGT for road scene understanding – general setup

"Supervising" sensors

Perquisite: Full alignment and synchronization between sensors

AGT for road scene understanding: scheme



Automated ground truth / Cross-sensor learning

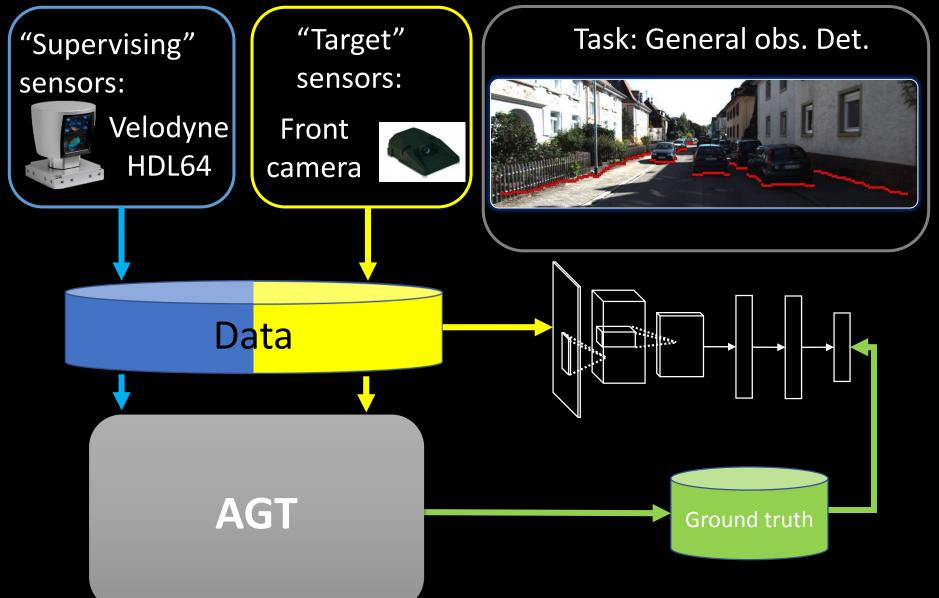
- 1. Solve an "easier" problem
- Run time
- Completeness

2. Promise

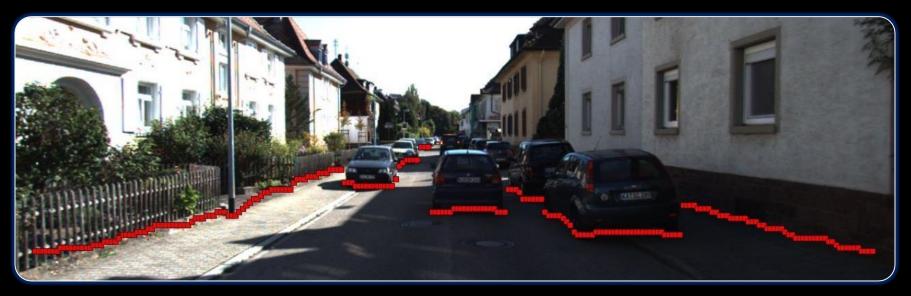
- Scalability
- Continuous (un-bounded) improvement

- Challenging setup
 Annotation quality / accuracy
 Inherent limitations of "supervisor":
- Learning beyond supervisor capabilities
- Learning from the same sensor (bootstrapping)

AGT for General obstacle detection



StixelNet: Monocular obstacle detection



Levi, Dan, Noa Garnett, Ethan Fetaya. StixelNet : A Deep Convolutional Network for Obstacle Detection and Road Segmentation. In *BMVC* 2015.

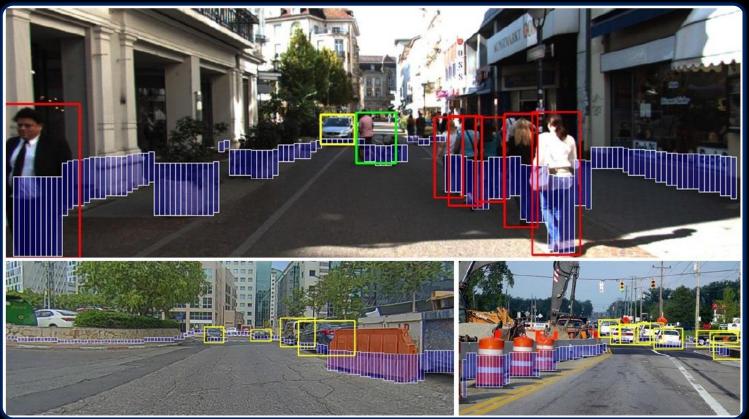
Limitations:

- Cannot handle: close obstacles, "clear" columns
- Low coverage (~30%)

Object-centric obstacle detection AGT

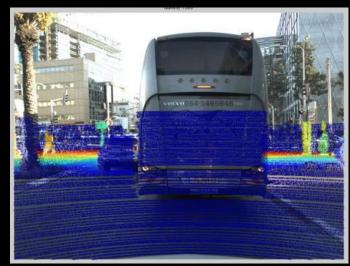


Unified network: StixelNet + Object detection + Object pose estimation



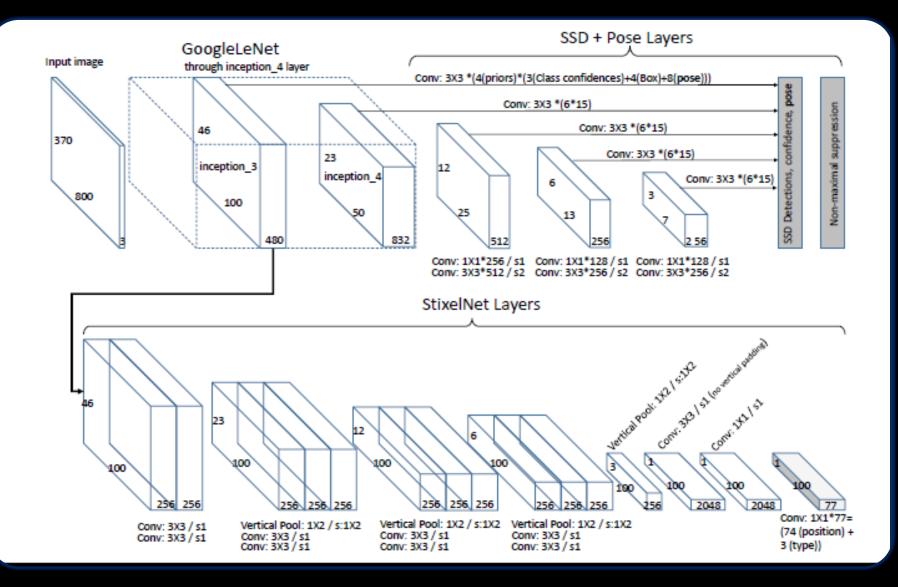
Noa Garnett, Shai Silberstein, Shaul Oron, Ethan Fetaya, Uri Verner, Ariel Ayash, Vlad Goldner, Rafi Cohen, Kobi Horn, Dan Levi. **Real-time category-based and general obstacle detection for autonomous driving. CVRSUAD Workshop, ICCV2017.**

New general obstacle dataset with fisheye lens camera

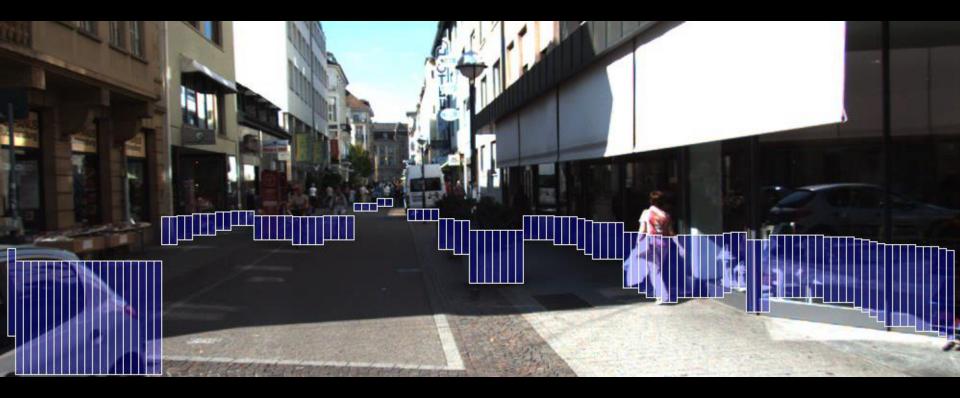


	#images	#instances (columns)
Kittitrain	6K	5M
Internal- train	16K	20M
Kitti-test	760	11K
Internal-test	910	19K

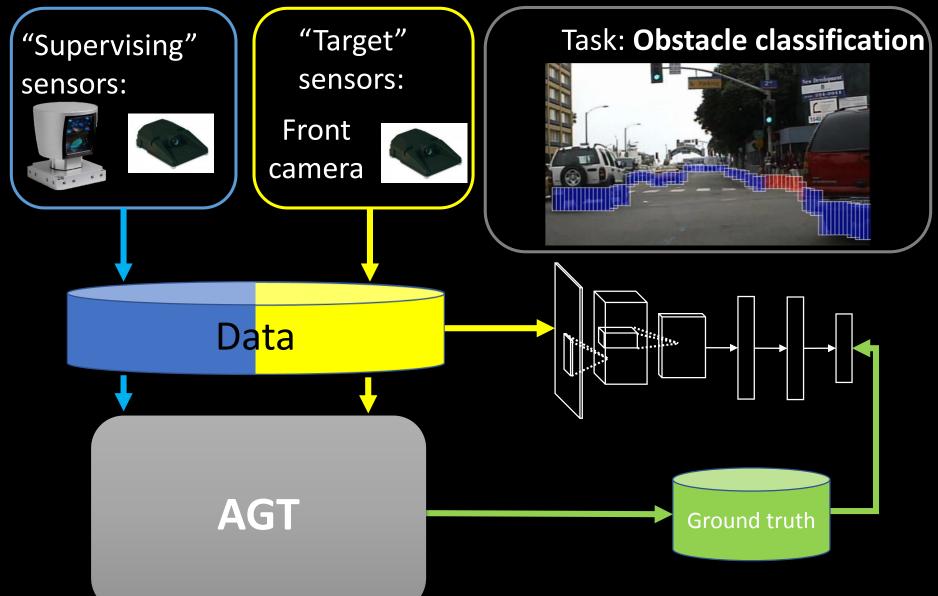
StixelNet2: New network architecture



Results on KITTI



AGT for **Obstacle classification**



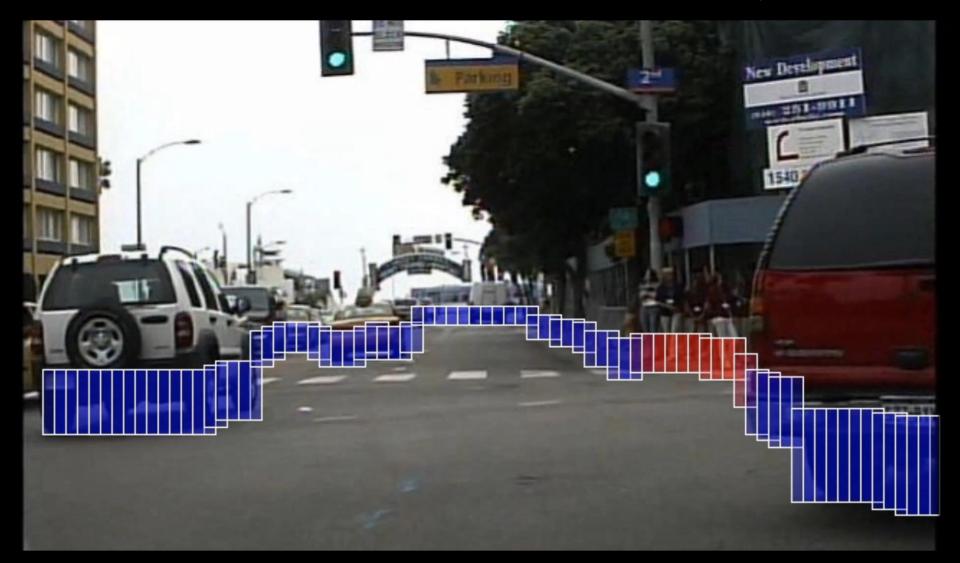
AGT for obstacle classification

Image based detection

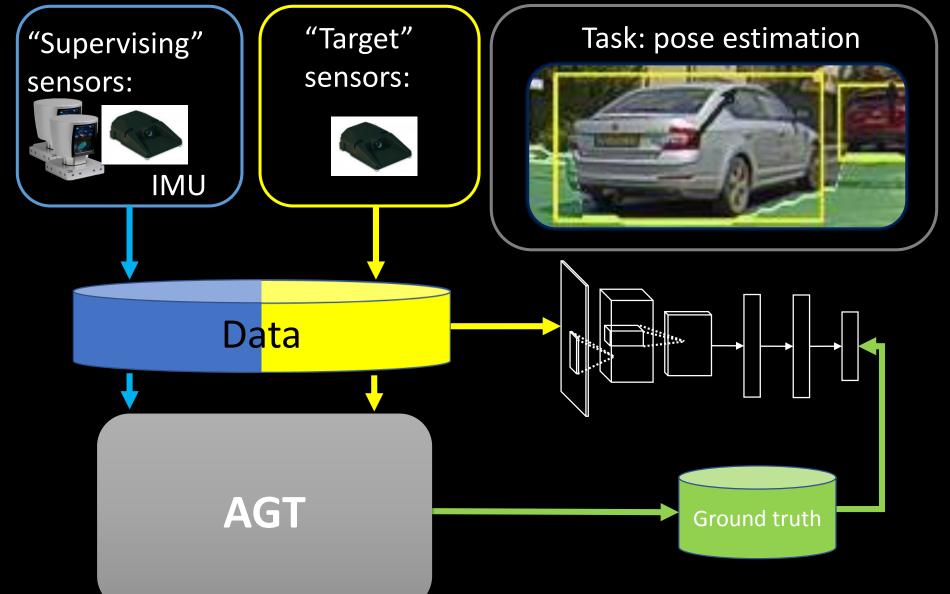
Lidar based verification

Source: http://self-driving-future.com/the-eyes/velodyne/

Obstacle classification trained net result: pedestrians



AGT for car pose estimation

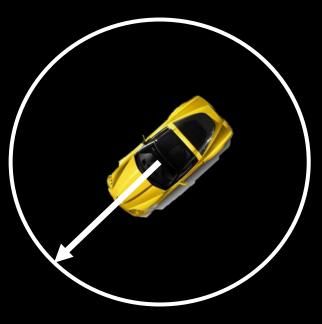


AGT for pose estimation

Multi sensor, temporal object detection

Source: http://self-driving-future.com/theeyes/velodyne/

8 orientation bins pose representation

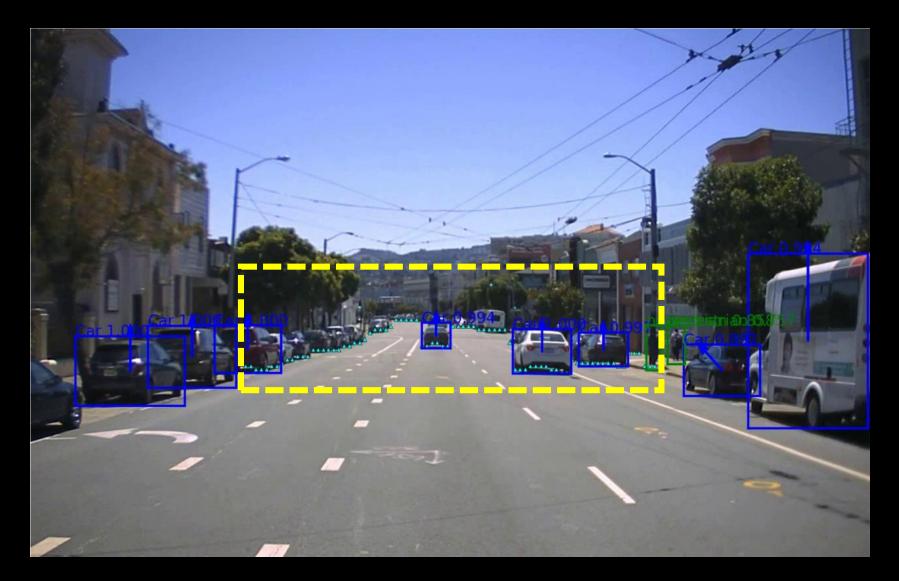


Dynamic \rightarrow Static

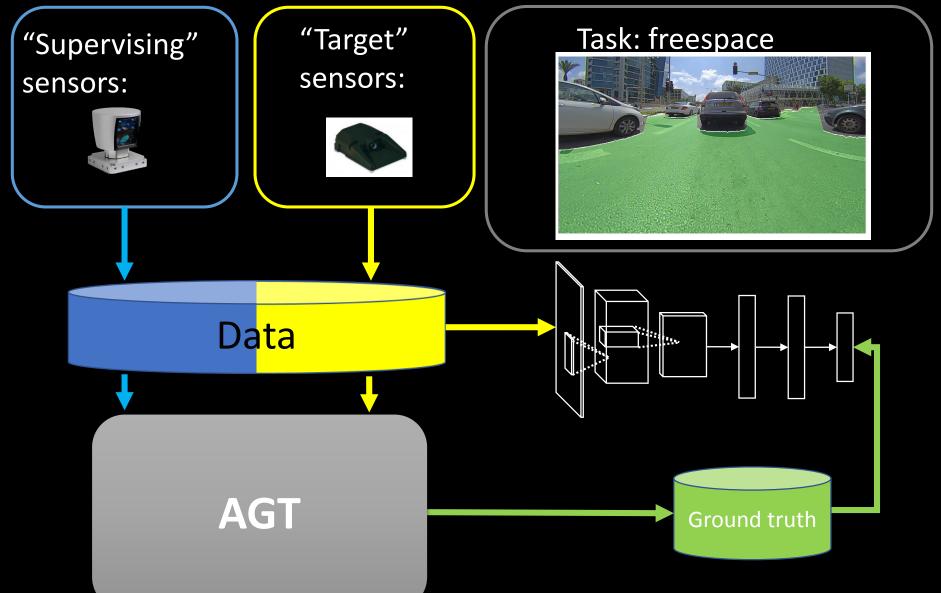
Pose estimation

trained with mixed AGT and Manual

Far range general obstacle detection



AGT for **freespace**



Estimate and subtract road plane

Analyze single Lidar "Beam"

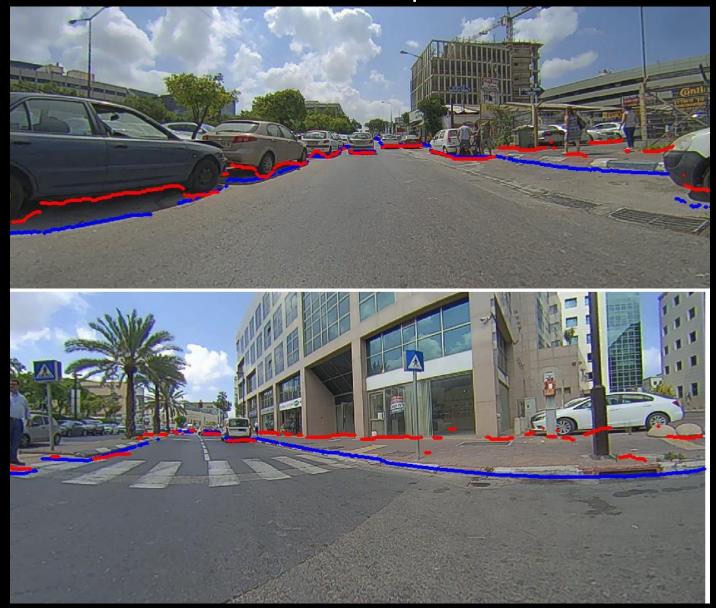
Project limit to ground plane

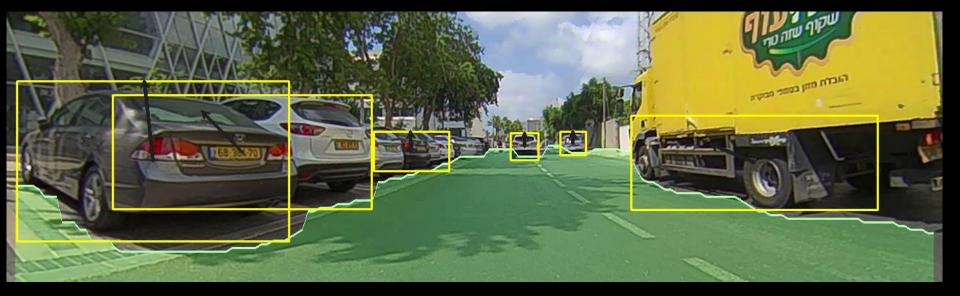
Project freespace limit to *image plane*, find "near" and "clear"

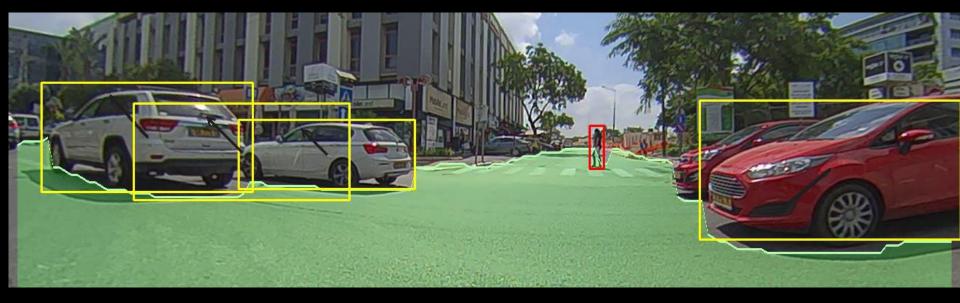


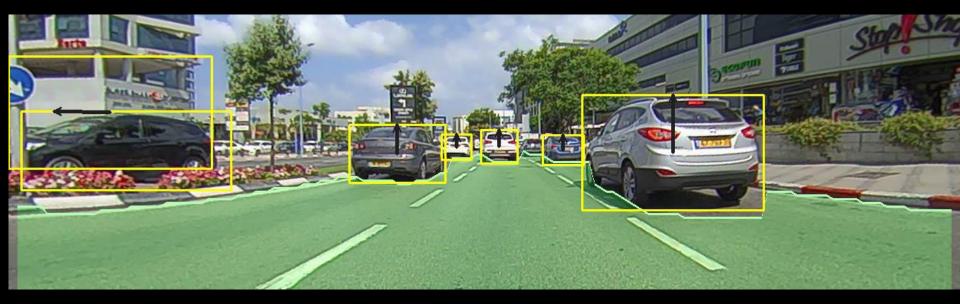
ICC

Obstacles vs. Freespace AGT











Finetuning from AGT: road segmentation

- 1. Fine-tune on KITTI Road segmentation (manually labelled)
- 2. Graph-cut segmentation
- 3. State-of-the-art accuracy among non-anonymous (94.88% MaxF)

What's next?

Uncertainty

Automatic ground truth

Correct, improve AGT through bootstrapping

Manual annotation

Multiple sensors

Simulated data

Thank you!