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AGENDA 

• Deep learning impact. 

• A sample of existing theory for deep learning. 

• Data structure based theory for deep learning  

• Neural networks with random Gaussian weights. 

• Generalization error of deep neural networks. 

• Deep learning as metric learning. 

• Solving minimization problems via deep learning. 
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DEEP LEARNING 
IMPACT 
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DEEP LEARNING IMPACT 

• Imagenet dataset 

• 1,400,000 images 

• 1000 categories 

• 150000 for testing,  

• 50000 for validation 
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Today we get 3.5% by 152 layers 
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CUTTING EDGE PERFORMANCE  
IN MANY OTHER APPLICATIONS 

• Disease diagnosis [Zhou,  Greenspan & Shen, 2016]. 

• Language translation [Sutskever et al., 2014]. 

• Video classification [Karpathy et al., 2014]. 

• Handwriting recognition [Poznanski & Wolf, 2016]. 

• Sentiment classification [Socher et al., 2013]. 

• Image denoising [Remez et al., 2017]. 

• Depth Reconstruction [Haim et al., 2017]. 

• Super-resolution [Kim et al., 2016], [Bruna et al., 2016]. 

• Error correcting codes [Nahmani, 2016]  

• many other applications… 
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CLASS AWARE DENOISING 
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[Remez, Litani, Giryes, Bronstein, 2017] 

Class aware 
denoising 

Agnostic 
denoising 
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DEPTH ESTIMATION BY PHASE CODED CUES 
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[Haim, Elmalem, 
Bronstein, Marom, 
Giryes, 2017] 
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ALL-IN-FOCUS BY PHASE CODED CUES 
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COMPRESSED COLOR LIGHT FIELD 
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EXOPLANETS DETECTION 
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DEEP ISP 
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WHY THINGS WORK BETTER TODAY? 

• More data – larger datasets, more access (internet)  

• Better hardware (GPU) 

• Better learning regularization (dropout) 

 

• Deep learning impact and success is not unique 
only to image classification. 

• But it is still unclear why deep neural networks  are 
so remarkably successful and how they are doing it. 
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DEEP NEURAL NETWORKS (DNN) 

• One layer of a neural net 

 

 

 

• Concatenation of the layers creates the whole net 

Φ(𝑋1, 𝑋2, … , 𝑋𝐾) = 𝜓 𝜓 𝜓 𝑉𝑋1 𝑋2 … 𝑋𝐾  

 

 

 

𝑉 ∈ ℝ𝑑 𝑿 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎 

𝑋 is a linear 
operation 

𝝍 is a non-linear 
function 

𝑉𝑋 

𝑽 ∈ ℝ𝒅 𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍 
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CONVOLUTIONAL NEURAL NETWORKS (CNN) 

 

 

 

 

 

• In many cases, 𝑋 is selected to be a convolution. 

• This operator is shift invariant. 

• CNN are commonly used with images as they are 
typically shift invariant.  

 

𝑽 ∈ ℝ𝒅 𝑿 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎 

𝑋 is a linear 
operation 

𝐹 is a non-linear 
function 

𝑉𝑋 
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THE NON-LINEAR PART 

• Usually 𝜓 = 𝑔 ∘ 𝑓. 

• 𝑓 is the (point-wise) activation function 

 

 

• 𝑔 is a pooling or an aggregation operator.  

 

 

 

ReLU  
𝑓(x) = max(x, 0) 

Sigmoid  

𝑓 𝑥 =
1

1 + 𝑒−𝑥 

Hyperbolic 
tangent  

𝑓 𝑥 = tanh(𝑥) 

𝑉1 𝑉2 𝑉𝑟 𝑉3 𝑉4 … … … … 

max
𝑖

𝑉𝑖 

Max pooling Mean pooling 

1

𝑛
 𝑉𝑖

𝑛

𝑖=1
 

𝑙𝑝 pooling 

 𝑉𝑖
𝑝

𝑛

𝑖=1

𝑝

 

𝑿 𝝍 
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A SAMPLE OF 
EXISTING THEORY FOR  

DEEP LEARNING 
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WHY DNN WORK? 

 

What is so 
special with the 
DNN structure? What is the role of 

the depth of DNN? 

What is the role 
of pooling? 

What is the role of 
the activation 

function? 

How many 
training samples 

do we need? 

What is the 
capability of DNN? 

What happens to the 
data throughout the 

layers? 
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REPRESENTATION POWER 

• Neural nets serve as a universal approximation for any 
measurable Borel functions [Cybenko 1989, Hornik 1991]. 

• In particular, let the non-linearity 𝜓 be a bounded, 
non-constant continuous function, 𝐼𝑑 be the 𝑑-
dimensional hypercube, and 𝐶 𝐼𝑑  be the space of 
continuous functions on 𝐼𝑑. Then for any 𝑓 ∈ 𝐶 𝐼𝑑  
and 𝜖 > 0, there exists 𝑚 > 0, and 𝑋 ∈ ℝ𝑑×𝑚,  
𝐵 ∈ ℝ𝑚, 𝑊 ∈ ℝ𝑚 such that the neural network  

𝐹 𝑉 = 𝜓 𝑉𝑋 + 𝐵 𝑊𝑇 
approximates 𝑓 with a precision 𝜖: 

𝐹 𝑉 − 𝑓 𝑉 < 𝜖, ∀𝑉 ∈ ℝ𝑑 
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ESTIMATION ERROR 

• The estimation error of a function f by a neural 
networks scales as [Barron 1994].   

𝑶
𝑪𝒇

𝑵
+ 𝑶

𝑵𝒅

𝑳
𝐥𝐨𝐠(𝑳)  

  

Smoothness of 
approximated 

function 

Number of 
neurons in the 

DNN 

Number of 
training 

examples 

Input 
dimension 
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DEPTH OF THE NETWORK 

• Depth allow representing shallow restricted 
Boltzmann machines, which has an exponential 
number of parameters, compared to the deep one 
[Montúfar & Morton, 2015] 

• Each DNN layer with ReLU divides the space by a 
hyper-plane, folding one part of it.  

• Thus, the depth of the network folds the space 
into an exponential number of sets compared to 
the number of parameters [Montúfar, Pascanu, Cho & 

Bengio, 2014] 

20 IMVC, 2018 



DEPTH EFFICIENCY OF CNN 

• Function realized by CNN, with ReLU and max-
pooling, of polynomial size requires super-
polynomial size for being approximated by shallow 
network [Telgarsky 2016 ,Cohen et al., 2016]. 

• Standard convolutional network design has 
learning bias towards statistics of natural images 
[Cohen et al., 2016]. 
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ROLE OF POOLING 

• The pooling stage provides shift invariance [Boureau et 

al. 2010], [Bruna, LeCun & Szlam, 2013]. 

• A connection is drawn between the pooling stage and 
the phase retrieval methods [Bruna, Szlam & LeCun, 2014]. 

• This allows calculating Lipchitz constants of each DNN 
layer 𝜓(∙ 𝑋) and empirically recovering the input of a 
layer from its output.  

• However, the Lipchitz constants calculated are very 
loose and no theoretical guarantees are given for the 
recovery. 
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SUFFICIENT STATISTIC AND INVARIANCE 

• Given a certain task at hand: 

• Minimal sufficient statistic guarantees that we can 
replace raw data with a representation with smallest 
complexity and no performance loss.  

• Invariance guarantees that the statistic is constant 
with respect to uninformative transformations of the 
data. 

• CNN are shown to have these properties for many 
tasks [Soatto & Chiuso, 2016]. 

• Good structures of deep networks can generate 
representations that are good for learning with a small 
number of examples [Anselmi et al., 2016]. 
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SCATTERING TRANSFORMS 

• Scattering transform - a cascade of wavelet 
transform convolutions with nonlinear modulus 
and averaging operators. 

• Scattering coefficients are stable encodings of 
geometry and texture [Bruna & Mallat, 2013] 
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Original image 
with 𝑑 pixels 

Recovery from first 
scattering moments: 
𝑂 log 𝑑  coefficients 

Recovery from 1st & 2nd 
scattering moments:  
𝑂 log2 𝑑  coefficients 

Images from slides of Joan Bruna in ICCV 2015 tutorial 
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SCATTERING TRANSFORMS AND DNN 

• More layers create features that can be made 
invariant to increasingly more complex 
deformations.  

• Deep layers in DNN encode complex, class-specific 
geometry. 

• Deeper architectures are able to better capture 
invariant properties of objects and scenes in 
images 
[Bruna & Mallat, 2013], [Wiatowski & Bölcskei, 2016] 
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SCATTERING TRANSFORMS AS A METRIC 

• Scattering transforms may be used as a metric. 

• Inverse problems can be solved by minimizing 
distance at the scattering transform domain. 

• Leads to remarkable results in super-resolution 
[Bruna, Sprechmann & Lecun, 2016] 
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SCATTERING SUPER RESOLUTION 

Original Best Linear Estimate State-of-the-art Scattering estimate 

Images from slides of Joan Bruna in CVPR 2016 tutorial 

[Bruna, Sprechmann & Lecun, 2016] 
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MINIMIZATION 

• The local minima in deep networks are not far from the 
global minimum. 
 

• saddle points are the  
main problem of deep 
Learning optimization. 
 

• Deeper networks have  
more local minima but less saddle points.  
[Saxe, McClelland & Ganguli, 2014], [Dauphin, Pascanu, Gulcehre, Cho, 
Ganguli & Bengio, 2014] [Choromanska, Henaff, Mathieu, Ben Arous & 
LeCun, 2015] 

• Deep learning can be viewed as a sparse recovery method [Papyan et al., 2017] 
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[Choromanska et al., 2015] 
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GLOBAL OPTIMALITY IN DEEP LEARNING 

• Deep learning is a positively homogeneous 
factorization problem, i.e., ∃𝑝 ≥ 0 such that  
∀𝛼 ≥ 0 DNN obey 
Φ 𝛼𝑋1, 𝛼𝑋2, … , 𝛼𝑋𝐾 = 𝛼𝑝Φ 𝑋1, 𝑋2, … , 𝑋𝐾 . 

• With proper regularization, local minima are global. 

• If the network is large enough, global minima can 
be found by local descent. 
 

 

 

Guarantees of proposed 
framework 

[Haeffele & Vidal, 2015] 
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RELATIONSHIP TO SPARSE REPRESENTATION 

• Forward pass of CNN can be viewed as a layerwise 
convolutional sparse coding 

• Leads to uniqueness and stability guarantees for 
the representation in the layers of the network 

• Novel strategies for performing the forward pass 
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DATA STRUCTURE 
BASED THEORY FOR 

DEEP LEARNING  
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OUTLINE 

DNN keep 
the 

important 
information 
of the data. 

Class aware 
image  

denoising  

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 

optimization 
problems 
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DNN keep 
the 

important 
information 
of the data. 

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 

optimization 
problems 

Stability 
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Class aware 
image  

denoising  

IMVC, 2018 



 

 

 

ASSUMPTIONS 

𝑋 is a 
random 

Gaussian 
matrix 

𝜓 is an 
element wise 

activation 
function 

𝑽 ∈ 𝜰 

𝑽 ∈ 𝕊𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎 𝑉𝑋 𝑿 

max(v, 0) 1

1 + 𝑒−𝑥
 tanh(𝑣) 

𝑚 = 𝑂 𝛿−6𝜔2 Υ  
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Theorem 1: small 
𝝎𝟐 𝜰

𝒎
 imply 𝝎𝟐 𝜰 ≈ 𝝎𝟐 𝝍(𝑽𝑿)   

GAUSSIAN MEAN WIDTH IN DNN 

𝜰 ⊂ ℝ𝒅 

𝑿 𝝍 

𝝍(𝑽𝑿) ∈ ℝ𝒎 
𝑋 is a linear 
operation 

𝐹 is a non-linear 
function 

𝜰𝑿 ⊂ ℝ𝒎 

Small 𝝎𝟐 𝜰   Small 𝝎𝟐 𝝍(𝑽𝑿)  

It is sufficient to provide proofs only for a single layer 
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ISOMETRY IN A SINGLE LAYER 

Theorem 2: 𝜓(∙ 𝑋)is a 𝛿-isometry in the Gromov-
Hausdorff sense between the sphere 𝕊𝑑−1 and the 
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2016]. 

𝑽 ∈ 𝕊𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎 𝑉𝑋 𝑋 

• If two points belong to the same tile 

then their distance < 𝜹  
• Each layer of the network keeps the 

main information of the data 
 

The rows of 𝑋 create a tessellation of the space. 
 This stands in line with [Montúfar et. al. 2014] 
 This structure can be used for hashing 36 IMVC, 2018 



DNN AND HASHING 

• A single layer performs a locally sensitive hashing. 

• Deep network with random weights may be 
designed to do better [Choromanska et al., 2016]. 

• It is possible to train DNN for hashing, which 
provides cutting-edge results [Masci et al., 2012], 
[Lai et al., 2015]. 
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DNN STABLE EMBEDDING 

𝑽 ∈ 𝕊𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎 𝑉𝑋 𝑿 

Theorem 3: There exists an algorithm 𝒜 such that 

𝑉 − 𝒜(𝜓(𝑉𝑋)) < 𝑂
𝜔 Υ

𝑚
= 𝑂 𝛿3  

[Plan & Vershynin, 2013, Giryes, Sapiro & Bronstein 2016]. 

After 𝐾 layers we have an error 𝑂 𝐾𝛿3  

Stands in line with [Mahendran and Vedaldi, 2015]. 

DNN keep the important information of the data 
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DNN keep 
the 

important 
information 
of the data. 

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 

optimization 
problems 

Role of 
Training 

39 

Class aware 
image  

denoising  
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ROLE OF TRAINING 

• Having a theory for Gaussian weights we test the 
behavior of DNN after training. 

• We looked at the MNIST, CIFAR-10 and ImageNet 
datasets. 

• We will present here only the ImageNet results.  

• We use a state-of-the-art pre-trained network for 
ImageNet [Simonyan & Zisserman, 2014]. 

• We compute inter and intra class distances. 
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Compute the distance ratio: 
𝑽 −𝒁 

𝑾−𝑽
 

INTER BOUNDARY POINTS DISTANCE RATIO 

Class II 
Class I 

Class II Class I 

𝑾 𝑽 

𝑉 is a random point and 
𝑊 its closest point from 

a different class.   

𝑽  

𝑉  is the output of 𝑉 and 𝑍  the closest 
point to 𝑉  at the output from a 

different class. 

𝑾 − 𝑽  

𝒁  

𝑽 − 𝒁  

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓 
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Compute the distance ratio: 
𝑽 −𝒁 

𝑾−𝑽
 

INTRA BOUNDARY POINTS DISTANCE RATIO 

Class II Class I Class II Class I 

𝑾 

𝑽 

Let 𝑉 be a point and 𝑊 
its farthest point from 

the same class.   

𝑽  

Let 𝑉  be the output of 𝑉 and 𝑍  the 
farthest point from 𝑉  at the output 

from the same class 

𝑾 − 𝑽  

𝒁  

𝑽 − 𝒁  

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓 

42 IMVC, 2018 



Inter-class 

 

Intra-class 

 

𝑉 − 𝑍 

𝑊 − 𝑉
 

𝑉 − 𝑍 

𝑊 − 𝑉
 

BOUNDARY DISTANCE RATIO 
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Compute the distance ratios: 
𝑽 −𝑾

𝑽−𝑾
, 

𝑽 −𝒁 

𝑽−𝒁
 

AVERAGE POINTS DISTANCE RATIO 

Class II 

Class I 

Class II 
Class I 𝒁 

𝑽 

𝑉, 𝑊 and 𝑍 are three 
random points 

𝑽  

𝑉 , 𝑊  and 𝑍  are the outputs of 𝑉, 𝑊 
and 𝑍respectively. 

𝑽 − 𝑾  𝒁  

𝑽 − 𝒁  

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓 

𝑾 

𝑽 − 𝑾  

𝑽 − 𝒁  

𝑊 
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AVERAGE DISTANCE RATIO 

Inter-class 

 

Intra-class 

 

𝑉 − 𝑊 

𝑉 − 𝑊
 

𝑉 − 𝑍 

𝑉 − 𝑍
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ROLE OF TRAINING 

• On average distances are preserved in the trained 
and random networks. 

• The difference is with respect to the boundary 
points.  

• The inter distances become larger. 

• The intra distances shrink. 
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DNN keep 
the 

important 
information 
of the data. 

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 

optimization 
problems 

Generali-
zation 
Error 
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Class aware 
image  

denoising  

IMVC, 2018 



softmax/ 
linear 

classifier 

ASSUMPTIONS 

𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍 

general non-linearity 
(ReLU, pooling,…)  

𝐓𝐰𝐨 

𝐂𝐥𝐚𝐬𝐬𝐞𝐬 
𝑾 

𝒘𝑻𝜱 𝑿𝟏, 𝑿𝟐, … , 𝑿𝑲 = 𝟎 

∈ 𝜰 

InputSpace FeatureSpace 
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GENERALIZATION ERROR (GE) 

• In training, we reduce the classification error 
ℓtraining of the training data as the number of 

training examples 𝐿 increases. 

• However, we are interested to reduce the error 
ℓtest of the (unknown) testing data as 𝐿 increases. 

• The difference between the two is the 
generalization error 

GE = ℓtraining − ℓtest 

• It is important to understand the GE of DNN 
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REGULARIZATION TECHNIQUES 

• Weight decay – penalizing DNN weights [Krogh & Hertz, 1992].  

• Dropout - randomly drop units (along with their connections) 
from the neural network during training [Hinton et al., 2012], 
[Baldi & Sadowski, 2013], Srivastava et al., 2014]. 

• DropConnect – dropout extension [Wan et al., 2013] 

• Batch normalization [Ioffe & Szegedy, 2015]. 

• Stochastic gradient descent (SGD) [Hardt, Recht & Singer, 
2016]. 

• Path-SGD [Neyshabur et al., 2015]. 

• And more [Rifai et al., 2011], [Salimans & Kingma, 2016], [Sun et 
al, 2016].  

50 IMVC, 2018 



A SAMPLE OF GE BOUNDS 

• Using the VC dimension it can be shown that 
 

GE ≤ 𝑂 DNNparams ∙
log 𝐿

𝐿
 

 
 [Shalev-Shwartz and Ben-David, 2014]. 

• The GE was bounded also by the DNN weights 
 

GE ≤
1

𝐿
2𝐾 𝑤 2  𝑋𝑖

2,2
𝑖

 

 [Neyshabur et al., 2015]. 

•  
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A SAMPLE OF GE BOUNDS 

• Using the VC dimension it can be shown that 
 

GE ≤ 𝑂 DNNparams ∙
log 𝐿

𝐿
 

 
 [Shalev-Shwartz and Ben-David, 2014]. 

• The GE was bounded also by the DNN weights 
 

GE ≤
1

𝐿
2𝐾 𝑤 2  𝑋𝑖

2,2
𝑖

 

 [Neyshabur et al., 2015]. 

• Note that in both cases the GE grows with the depth 
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DNN INPUT MARGIN 

• Theorem 6: If for every input margin 𝛾𝑖𝑛 𝑉𝑖 > 𝛾  
 

then   𝐺𝐸 ≤ 𝑁𝛾/2(Υ) 𝐿  

• 𝑁𝛾/2(Υ) is the covering number of the data Υ. 

• 𝑁𝛾/2(Υ) gets smaller as 𝛾 gets larger. 

• Bound is independent of depth. 

• Our theory relies on the  
robustness framework  
[Xu & Mannor, 2012]. 

𝑉𝑖  

𝑉𝑖 

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016] 
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INPUT MARGIN BOUND 

• Maximizing the input margin directly is hard 

• Our strategy: relate the input margin to the output 
margin 𝛾𝑜𝑢𝑡 𝑉𝑖  and other DNN properties 

• Theorem 7: 

 𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

 

 

    ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
21≤𝑖≤𝐾
 

  

    ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
𝐹1≤𝑖≤𝐾
 𝑉𝑖  

Φ(𝑉𝑖) 

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016] 54 IMVC, 2018 



OUTPUT MARGIN 

• Theorem 7:    

𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
21≤𝑖≤𝐾

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
𝐹1≤𝑖≤𝐾
 

• Output margin is easier to 
maximize – SVM problem 

• Maximized by many cost  
functions, e.g., hinge loss. 

 
𝑉𝑖  

Φ(𝑉𝑖) 
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GE AND WEIGHT DECAY 

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
21≤𝑖≤𝐾

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
𝐹1≤𝑖≤𝐾
 

 

• Bounding the weights  
increases the input margin 

• Weight decay regularization 
decreases the GE 

• Related to regularization used  
by [Haeffele & Vidal, 2015] 

𝑉𝑖  
Φ(𝑉𝑖) 
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JACOBIAN BASED REGULARIZATION 

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
21≤𝑖≤𝐾

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 𝑋𝑖
𝐹1≤𝑖≤𝐾
 

 

• 𝐽 𝑉  is the Jacobian of the  
DNN at point 𝑉. 

• 𝐽 ∙  is piecewise constant. 

• Using the Jacobian of the 
DNN leads to a better bound. 

• New regularization technique. 
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RESULTS 

• Better performance with less training samples 

 

 

 

• CCE: the categorical cross entropy. 

• WD: weight decay regularization. 

• LM: Jacobian based regularization for large margin. 

• Note that hinge loss generalizes better than CCE and 
that LM is better than WD as predicted by our theory. 

MNIST 
Dataset 

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016] 
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DNN keep 
the 

important 
information 
of the data. 

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 

optimization 
problems 

Minimiza
tion by 

DNN 
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UNCONSTRAINED ℓ1-MINIMIZATION 

𝝁𝑨𝑻 

Soft 
thresholding 

operation 

𝑽 ∈ ℝ𝒅 

𝑽 = 𝒁𝑨 + 𝑬 

𝒁  + 

Step size 𝜇 obeys  
1
𝜇

≥ 𝐴  

Iterative soft 
thresholding 

algorithm (ISTA) 

- 𝝀𝝁 Minimizer of  

𝒎𝒊𝒏
𝒁 

𝑽 − 𝒁 𝑨 + 𝝀 𝒁 
𝟏

 

𝝀𝝁 

𝜇 is the 
step size 

[Daubechies, Defrise & Mol, 2004], 
[Beck & Teboulle, 2009] 
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ISTA CONVERGENCE 

• Reconstruction mean squared error (MSE) as a 
function of the number of iterations 
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LEARNED ISTA (LISTA) 

𝑿 𝝍 

𝑺 

𝒁 ∈ 𝜰 

𝑽 ∈ ℝ𝒅 

𝑽 = 𝒁𝑨 + 𝑬 

𝒁  

An estimate  
of 𝒁 

+ 

Learned 
linear 

operators 

[Gregor & LeCun, 2010] 

Soft 
thresholding 

operation 
- 𝝀 𝝀 
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• Replacing 𝐼 − 𝜇𝐴𝐴𝑇  and 𝜇𝐴𝑇  in ISTA with the learned 
𝑋 and 𝑆 improves convergence [Gregor & LeCun, 2010] 

 

 

 

 

 

 

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016]. 

LISTA CONVERGENCE 

100 

20 
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LISTA MIXTURE MODEL 

• Approximation of the projection onto Υ   
with one linear projection may not  
be accurate enough. 

• This requires more LISTA layers/iterations. 

• Instead, one may use several LISTA networks, 
where each approximates a different part of Υ  

• Training multiple LISTA networks 
accelerate the convergence further. 

Υ  

Υ  

64 IMVC, 2018 [Giryes et al., 2018] 



LISTA MIXTURE MODEL 
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DNN keep 
the 

important 
information 
of the data. 
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Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 
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problems 

Minimiza
tion by 

DNN 
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CLASS AWARE DENOISING 
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[Remez, Litani, Giryes, Bronstein, 2017] 

Class aware 
denoising 

Agnostic 
denoising 
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DEPTH ESTIMATION BY PHASE CODED CUES 
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Take 
Home 

Message 

DNN keep 
the 

important 
information 
of the data. 

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data. 

Important goal 
of training:  
Classify the 

boundary points 
between the 

different classes 
in the data. 

Generalization 
error depends 

on the DNN 
input margin 

Deep learning 
can be viewed 

as a metric 
learning. 

DNN may 
solve 

optimization 
problems 
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QUESTIONS? 
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