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Deep Learning practices

• Deep learning is evolving fast, while many fundamental questions 
remain unanswered
• Many heuristics and intuition-guided decisions

• It works!

• But some may prove misguided

We’ll cover 3 of these

1. The impact of batch-size on generalization

2. Early-stopping and determining “over-fitting”

3. The role of the last classification layer
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1) Closing the “generalization gap”

“Train longer, generalize better: closing the generalization gap in 
large batch training of neural networks” (NIPS 2017 oral)

Elad Hoffer*, Itay Hubara*, Daniel Soudry
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Better models - parallelization is crucial
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• Model parallelism:

Split model (same data)

• Data parallelism:

Split data (same model)

AlexNet [Krizhevsky et al. 2012]: model split on two GPUs

SGD: weight update proportional to gradients averaged over mini batch

Can we increase batch size and improve parallelization?



Large batch size hurts generalization?

• Generalization gap persisted in models trained “without any budget or 
limits, until the loss function ceased to improve"

[Keskar et al. 2017]
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b=batch size

Why?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum (+ gradient clipping )

Learning rate 
decrease



Observation
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Weight distances from initialization increase

Batch size increases

Iterations (gradient updates)Epochs

logarithmically with iterations

Why logarithmic behavior? Theory later…



Experimental details

• We experiment with various datasets and models

• Optimizing using SGD + momentum + gradient clipping
• Usually generalize better than adaptive methods (e.g Adam)
• Grad clipping effectively creates a “warm-up” phase 

• Noticeable generalization gap between small and large batch
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Closing the generalization gap (2/4)

• Adapt learning rate. In CIFAR 
• Idea: mimic small batch gradient statistics (dataset dependent)

• Noticeably improves generalization, the gap remains
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Graph indicates: not enough iterations?

• Using these modifications – distance from 
initialization now better matched

• However, graph indicates: insufficient 
iterations with large batch

10

Iterations



Train longer, generalize better

• With sufficient iterations in “plateau” region, 

generalization gap vanish:
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Closing the generalization gap (4/4)

• Regime Adaptation – train so that the number of iterations is fixed for all 
batch sizes (train longer number of epochs)
• Completely closes the generalization gap
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ImageNet (AlexNet):



Why weight distances increase logarithmically? 

Hypothesis:

During initial high 

learning rate phase:

"random walk on a

random potential”

where
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Marinari et al., 1983: “ultra-slow diffusion”

Loss surface:



Ultra-slow diffusion: Basic idea

Time to pass tallest barrier:
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Summary so far

• Q: Is there inherent generalization problem with large batches?

A: Observed: no, just adjust training regime.

• Q: What is the mechanism behind training dynamics?

A: Hypothesis: "random walk on a random potential”

• Q: Can we reduce the total wall clock time? 

A: Yes, in some models
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Significant speed-ups possible

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Goyal et al. (Facebook whitepaper, two weeks after us)

• Large scale experiments: ResNet over ImageNet, 256 GPUs

• Similar methods, except learning rate

• X29 times faster than a single worker

• More followed:
• Large Batch Training of Convolutional Networks (You et al.)

• ImageNet Training in Minutes (You et al.)

• Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (Akiba et al.)
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2) Why “Overfitting” is good for generalization?

• In contrast to common practice: good generalization results from 
many gradient updates in an “overfitting regime”

Epochs

Norm of last layer%Misclassified examplesLoss

Training
Validation

Training

1 10 100 1000

Epochs

1 10 100 1000

Epochs

1 10 100 1000

Validation

Early stopping?
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Peculiar generalization dynamics - summary

• Validation Loss increases

• Training error + loss goes to zero

• Weight Norm diverges

Looks like we are overfitting… but

• Validation error (classification) seems to never stop decreasing (slowly) 

Conclusion: No need for early stopping (!)

How all of this makes sense?
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Why “Overfitting” is good for generalization?

• Can be shown to happen for logistic regression on separable data!

• Slow convergence to max-margin solution

The Implicit Bias of Gradient Descent on Separable Data (ICLR 2018)

• Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Nati Srebro
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Main Theorem
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Gradient descent on logistic loss:

Therefore:



… While expected loss (and test loss) increases

Expected loss:

Also true for test loss
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Validation loss is expected to 
increase, although accuracy may still 
improve!



3) The role of the final classifier

Fix your classifier: the marginal value of training the last 
weight layer 
Elad Hoffer, Itay Hubara, Daniel Soudry
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Fully connected classifier

We focus on the final representation obtained by the network 
𝐹 before the classifier 𝑥 = 𝐹(𝑧; 𝜃) (the last hidden layer) .
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Fully connected classifier

• In common NN models, this representation is followed by an 
additional affine transformation on 𝑥 ∈ ℝC to all possible 
classes 𝐶.

𝑦 = 𝑊𝑇𝑥 + 𝑏

• where the number of parameters is dependent on number of 
classes 𝑊 ∈ ℝN×𝐶 (can grow to be very large)
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Fully connected classifier

Training is done using cross-entropy loss, by feeding the network outputs 
through a softmax activation

and reducing the expected negative log likelihood with respect to ground-
truth target
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Fully connected classifier?

But the final fully-connected transform is a linear classifier:

– The network learns features that are already separable at this point.

– They fully-connected layers are also notoriously redundant -- easily 
compressed and discarded

Can they be removed completely?
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Fixed classifier

• To evaluate our conjecture, we replaced the trainable 
parameter matrix 𝑊 with a fixed orthonormal projection

Q ∈ ℝN×𝐶 such that 𝑄𝑄𝑇 = 𝐼𝑛

• As the rows of classifier weight matrix are fixed with an equal 
𝐿2 norm, we also restrict the representation of 𝑥 to reside on 
the n-dimensional sphere

ො𝑥 =
𝑥

𝑥 2
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Fixed classifier

Since and softmax function is scale-sensitive, 
we introduce another temperature scaling coefficient 

and we minimize the loss:
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Hadamard classifier

The fixed orthogonal weights can be chosen to be a Hadamard 
matrix:

𝐻𝑇𝐻 = 𝑛𝐼𝑛 , 𝐻 ∈ {−1,1}𝑛

– A deterministic, low-memory and easily generated matrix that can be 
used to classify.

– Removal of the need to perform a full matrix-matrix multiplication --
as multiplying by a Hadamard matrix can be done by simple sign 
manipulation and addition.
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Learned vs. Fixed classifier

• We compare the training of a fully-learned classifier with a fixed 
classifier (Cifar10, ResNet)

– Training error is lower when using a learned classifier.

– Both achieve the same accuracy on the validation set.
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Empirical results

We find that this behavior remains in other datasets and models

– Negligible decrease in accuracy when final layer is fixed

– Reduces number of weights -- e.g ShuffleNet, where most of the 
parameters are in the last layer
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Summary

• Large batch training ⇏ generalization decrease

• Validation loss increases ≠ overfitting occurs

• Validation error monotonically decreases: no early stopping

• Linear classification layers have marginal effect on accuracy
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Thank you for your time! Questions?

For more information, visit my page at:
www.DeepLearning.co.il
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