Rethinking Commmon Practices in
Deep Learning

Elad Hoffer

l o A

Y/

TECHNION

Israel Institute
of Technology

Deep Learning practices

* Deep learning is evolving fast, while many fundamental questions
remain unanswered
* Many heuristics and intuition-guided decisions
* |t works!
* But some may prove misguided

We'll cover 3 of these
1. The impact of batch-size on generalization
2. Early-stopping and determining “over-fitting”
3. The role of the last classification layer

1) Closing the “generalization gap”

“Train longer, generalize better: closing the generalization gap in
large batch training of neural networks” (NIPS 2017 oral)

Elad Hoffer*, Itay Hubara*, Daniel Soudry

Better models - parallelization is crucial

o \
‘1' ‘
3 . .l, ih %ae \dense
\ , .) ‘, N (e —
* \ 4 ‘
\ 0N \ A * ’ \
3 | - !
), | -) } > » »
13 . 13 Jense aense
\ \ i
128 Max L L
pooling “¥* 2

* Model parallelism:

e

Split model (same data)

\ J
A% NS rride Max 128 Max
Vot 4 pooling pooling

AlexNet [Krizhevsky et al. 2012]: model split on two GPUs

* Data parallelism:

Split data (same model) AW X —% 22:1 Vwln (W)

SGD: weight update proportional to gradients averaged over mini batch

Can we increase batch size and improve parallelization?

Large batch size hurts generalization?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum (+ gradient clipping)

/ b=batch size
~ b=64

~b=128
— b=256
b=512
~b=1024
— b=2048

Learning rate

decrease \

100

Epochs

* Generalization gap persisted in models trained “without any budget or

. 1
limits, until the loss function ceased to improve [Keskar et al. 2017]

lw(t) —w(0)]

nNn A~ O 0

101

Observation

Weight distances from initialization increase
logarithmically with iterations

Batch size increases

Epochs

—b=64
~—b=128
w(t) ~log(t) s
By

10000 20000 30000 40000 50000 60000
Iterations (gradient updates)

Why logarithmic behavior? Theory later...

Experimental details

* We experiment with various datasets and models

* Optimizing using SGD + momentum + gradient clipping
e Usually generalize better than adaptive methods (e.g Adam)
* Grad clipping effectively creates a “warm-up” phase

* Noticeable generalization gap between small and large batch

Network Dataset SB LB

F1 (Keskar et al., 2017) MNIST 98.27% 97.05%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95%
Resnetd4 (He et al., 2016) Cifarl0 02.83% 86.10%
VGG (Simonyan, 2014) Cifarl0 92.30% 84.1%
C3 (Keskar et al., 2017) Cifar100 61.25% 51.50%
WResnetl6-4 (Zagoruyko, 2016) Cifarl00 73.70% 68.15%

Closing the generalization gap (2/4)

« Adapt learning rate. In CIFAR o Vb

* |dea: mimic small batch gradient statistics (dataset dependent)

* Noticeably improves generalization, the gap remains

Network Dataset SB LB +LR

F1 (Keskar et al., 2017) MNIST 98.27% 97.05% 97.55%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95% 86.15%
Resnetd4 (He et al., 2016) Cifarl0 02.83% 86.10% 89.30%
VGG (Stmonyan, 2014) Cifarl0 92.30% 84.1% 88.6%
C3 (Keskar et al., 2017) Cifar1l00 61.25% 51.50% 57.38%
WResnetl6-4 (Zagoruyko, 2016) Cifarl00 73.70% 68.15% 69.05%

Graph indicates: not enough iterations?

 Using these modifications — distance from 2" g
« ey . . 81 —b=
initialization now better matched = -

—] —b=1024

* However, graph indicates: insufficient =4 Bl
) : . 3,
iterations with large batch =2 | | | | | |

10000 20000 30000 40000 50000 60000
Iterations
Network Dataset SB LB +LR +GBN
F1 (Keskar et al., 2017) MNIST 9827% 97.05% 97.55% 97.60%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95% 86.15% 86.4%
Resnet44 (He et al., 2016) Cifarl0 92.83% 86.10% 89.30% 90.50%
VGG (Simonyan, 2014) Cifarl0 9230% 84.1% 88.6% 91.50%
C3 (Keskar et al., 2017) Cifarl00 61.25% 51.50% 57.38% 57.5%
WResnet16-4 (Zagoruyko, 2016) Cifarl00 73.70% 68.15% 69.05% 71.20%

10

Train longer, generalize better

* With sufficient iterations in “plateau” region,
generalization gap vanish:

80 —b=128 g::__&ﬂ ‘ Tﬁ,'—-“:*_

— b=2048, adapted regime @ @0————————————t————————F—————— T

—b=4096, adapted regime 31500 32000 32500 33000 33500
[terations

Error \%

4D

0 5000 10000 15000 20000 25000 30000 35000
lterations

11

Closing the generalization gap (4/4)

* Regime Adaptation — train so that the number of iterations is fixed for all
batch sizes (train longer number of epochs)

 Completely closes the generalization gap

Network Dataset SB LB +LR +GBN +RA
F1 (Keskar et al., 2017) MNIST 9827% 97.05% 97.55% 97.60% 98.53%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95% 86.15% 86.4% 88.20%
Resnetd4 (He et al., 2016) Cifarl0 92.83% 86.10% 89.30% 90.50% 93.07%
VGG (Simonyan, 2014) Cifar10 9230% 84.1% 88.6% 91.50% 93.03%
C3 (Keskar et al., 2017) Cifar100 61.25% 51.50% 57.38% 57.5% 63.20%
WResnet16-4 (Zagoruyko, 2016) Cifar100 73.70% 68.15% 69.05% 71.20% 73.57%
LB size Dataset SB LB® +LR® +GBN +RA
ImageNet (AlexNet): 4096 ImageNet 57.10% 41.23% 53.25% 54.92% 59.5%
8192 ImageNet 57.10% 41.23% 53.25% 53.93% 59.5%

12

Why weight distances increase logarithmically?

Loss surface: L (w)

Hypothesis:

During initial high
learning rate phase:
"random walk on a
random potential”

where
st 2 \/E (L (w) - L (w(0)))? ~ [w - w(0)]" 001
1 2 0.005
Marinarietal., 1983: W (t) ~ log7 (t) “ultra-slow diffusion” U..' |
0 5 10

[w-w(0)] 13

Ultra-slow diffusion: Basic idea

d”

Time to pass tallest barrier:

d

t o exp(d?)

= d X log% (1)

14

Summary so far

* Q: Is there inherent generalization problem with large batches?
A: Observed: no, just adjust training regime.

* Q: What is the mechanism behind training dynamics?

IH

A: Hypothesis: "random walk on a random potentia

* Q: Can we reduce the total wall clock time?

A: Yes, in some models

15

Significant speed-ups possible

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Goyal et al. (Facebook whitepaper, two weeks after us)
* Large scale experiments: ResNet over ImageNet, 256 GPUs
* Similar methods, except learning rate
* X29 times faster than a single worker

* More followed:
* Large Batch Training of Convolutional Networks (You et al.)
* ImageNet Training in Minutes (You et al.)
* Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (Akiba et al.)

16

2) Why “Overfitting” is good for generalization?

* In contrast to common practice: good generalization results from
many gradient updates in an “overfitting regime”

1071 3

101-2 5

Loss 1

1070 5

| Training

1073 5

| Validation

10"-4 -

Early stopping?

1

10 100 1000
Epochs

50 1

40 -

%Misclassified examples Norm of last layer

80

Training
Validation

15

10

10 100 1000 1 10 100 1000

Epochs Epochs 17

Peculiar generalization dynamics - summary

 Validation Loss increases

* Training error + loss goes to zero

* Weight Norm diverges

Looks like we are overfitting... but

 Validation error (classification) seems to never stop decreasing (slowly)

No need for early stopping (!)

How all of this makes sense?

18

Why “Overfitting” is good for generalization?

e Can be shown to happen for logistic regression on separable data!
* Slow convergence to max-margin solution

The Implicit Bias of Gradient Descent on Separable Data (ICLR 2018)
 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Nati Srebro

19

Main Theorem

Gradient descent on logistic loss: Aw = —nVL (w)

4)
Theorem 1: W (t) = wlogt+ p(t) ,

w is the (L2) max margin vector

t) is bounded, for almost every dataset.
P y =,

Therefore: w (1) \ VTY
| w ()] |w|

... While expected loss (and test loss) increases
w (t) = wlogt + p (1)
Expected loss:

E[L (w)] = Q(logt).

Also true for test loss

Validation loss is expected to
increase, although accuracy may still
improve!

22

3) The role of the final classifier

Fix your classifier: the marginal value of training the last
weight layer

Elad Hoffer, Itay Hubara, Daniel Soudry

23

Fully connected classifier

We focus on the final representation obtained by the network
F before the classifier x = F(z; 8) (the last hidden layer) .

convolutions subsampling convolutio full

convolutions subsampling _)

subsampling

input 1st stage 2nd stage

24

Fully connected classifier

* In common NN models, this representation is followed by an
additional affine transformation on x € R to all possible

classes C.
y=WT'x+b

 where the number of parameters is dependent on number of
classes W € RN*XC (can grow to be very large)

Fully connected classifier

Training is done using cross-entropy loss, by feeding the network outputs
through a softmax activation

B Zf eYi

and reducing the expected negative log likelihood with respect to ground-
truth target

(%)

,i1e{l,...,C}

C
L(x,t) = —logvy = —wy - & — by + log (Zew3'$+b3)

J

where w; is the i-th column of W.

Fully connected classifier?

But the final fully-connected transform is a linear classifier:
— The network learns features that are already separable at this point.

— They fully-connected layers are also notoriously redundant -- easily
compressed and discarded

Can they be removed completely?

Fixed classifier

* To evaluate our conjecture, we replaced the trainable
parameter matrix W with a fixed orthonormal projection

Q € RN*C such that QQT =1,

* As the rows of classifier weight matrix are fixed with an equal
L, norm, we also restrict the representation of x to reside on

the n-dimensional sphere
X

1xl2

X =

Fixed classifier

Since —1 < ¢q; -2 <1 and softmax function is scale-sensitive,
we introduce another temperature scaling coefficient «

Qi T+b;

V; = quaqj-;’&+bj’ 1 & {]_,,C}
J

and we minimize the loss:

C
X X
L(z,t) = —aq; - P -0y + log (E exp (Q’Qi' | b))

Hadamard classifier

The fixed orthogonal weights can be chosen to be a Hadamard
matrix:

HTH =nl,, He{-11}"

— A deterministic, low-memory and easily generated matrix that can be
used to classify.

— Removal of the need to perform a full matrix-matrix multiplication --
as multiplying by a Hadamard matrix can be done by simple sign
manipulation and addition.

Learned vs. Fixed classifier

We compare the training of a fully-learned classifier with a fixed
classifier (Cifar10, ResNet)

— Training error is lower when using a learned classifier.
— Both achieve the same accuracy on the validation set.

Training error Validation error
1072 4
] — |eamed classifier

- fixed classifier

107 -

Error

100 -

10%-1 4

31

Empirical results

We find that this behavior remains in other datasets and models
— Negligible decrease in accuracy when final layer is fixed

— Reduces number of weights -- e.g ShuffleNet, where most of the
parameters are in the last layer

Network Dataset Learned Fixed # Params % Fixed params
Resnets56 Cifar1io 93.03% 93.14% 855,770 0.07%
DenseNet(k=12) Cifar1o0 77.73% 77.67% 800,032 4.2%

Resnets0 ImageNet 75.3% 75.3% 25,557,032 8.01%
DenseNet169 ImageNet 76.2% 76% 14,149,480 11.76%

ShuffleNet ImageNet 65.9% 65.4% 1,826,555 ‘52.56%\

Summary

Large batch training # generalization decrease

Validation loss increases # overfitting occurs

Validation error monotonically decreases: no early stopping
Linear classification layers have marginal effect on accuracy

Thank you for your time! Questions?

For more information, visit my page at:
www.Deeplearning.co.il

34

