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Deep Learning practices

* Deep learning is evolving fast, while many fundamental questions
remain unanswered
* Many heuristics and intuition-guided decisions
* |t works!
* But some may prove misguided

We'll cover 3 of these
1. The impact of batch-size on generalization
2. Early-stopping and determining “over-fitting”
3. The role of the last classification layer



1) Closing the “generalization gap”

“Train longer, generalize better: closing the generalization gap in
large batch training of neural networks” (NIPS 2017 oral)

Elad Hoffer*, Itay Hubara*, Daniel Soudry



Better models - parallelization is crucial
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* Model parallelism:

e

Split model (same data)
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AlexNet [Krizhevsky et al. 2012]: model split on two GPUs

* Data parallelism:

Split data (same model) AW X —% 22:1 Vwln (W)

SGD: weight update proportional to gradients averaged over mini batch

Can we increase batch size and improve parallelization?



Large batch size hurts generalization?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum (+ gradient clipping )
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* Generalization gap persisted in models trained “without any budget or

. . . . . 1
limits, until the loss function ceased to improve [Keskar et al. 2017]
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Observation

Weight distances from initialization increase
logarithmically with iterations

Batch size increases

Epochs

—b=64
~—b=128
w(t) ~log(t) s
By
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Iterations (gradient updates)

Why logarithmic behavior? Theory later...



Experimental details

* We experiment with various datasets and models

* Optimizing using SGD + momentum + gradient clipping
e Usually generalize better than adaptive methods (e.g Adam)
* Grad clipping effectively creates a “warm-up” phase

* Noticeable generalization gap between small and large batch

Network Dataset SB LB

F1 (Keskar et al., 2017) MNIST 98.27% 97.05%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95%
Resnetd4 (He et al., 2016) Cifarl0 02.83% 86.10%
VGG (Simonyan, 2014) Cifarl0 92.30% 84.1%
C3 (Keskar et al., 2017) Cifar100 61.25% 51.50%
WResnetl6-4 (Zagoruyko, 2016) Cifarl00  73.70%  68.15%




Closing the generalization gap (2/4)

« Adapt learning rate. In CIFAR o Vb

* |dea: mimic small batch gradient statistics (dataset dependent)

* Noticeably improves generalization, the gap remains

Network Dataset SB LB +LR

F1 (Keskar et al., 2017) MNIST 98.27% 97.05% 97.55%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95% 86.15%
Resnetd4 (He et al., 2016) Cifarl0 02.83% 86.10% 89.30%
VGG (Stmonyan, 2014) Cifarl0 92.30% 84.1% 88.6%
C3 (Keskar et al., 2017) Cifar1l00 61.25% 51.50% 57.38%
WResnetl6-4 (Zagoruyko, 2016) Cifarl00 73.70% 68.15% 69.05%




Graph indicates: not enough iterations?
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Network Dataset SB LB +LR +GBN
F1 (Keskar et al., 2017) MNIST  9827% 97.05% 97.55% 97.60%
C1 (Keskar et al., 2017) Cifarl0  87.80% 83.95% 86.15% 86.4%
Resnet44 (He et al., 2016) Cifarl0  92.83% 86.10% 89.30% 90.50%
VGG (Simonyan, 2014) Cifarl0  9230% 84.1% 88.6%  91.50%
C3 (Keskar et al., 2017) Cifarl00 61.25% 51.50% 57.38% 57.5%
WResnet16-4 (Zagoruyko, 2016)  Cifarl00 73.70% 68.15% 69.05% 71.20%
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Train longer, generalize better

* With sufficient iterations in “plateau” region,
generalization gap vanish:
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Closing the generalization gap (4/4)

* Regime Adaptation — train so that the number of iterations is fixed for all
batch sizes (train longer number of epochs)

 Completely closes the generalization gap

Network Dataset SB LB +LR +GBN +RA
F1 (Keskar et al., 2017) MNIST 9827% 97.05% 97.55% 97.60% 98.53%
C1 (Keskar et al., 2017) Cifarl0 87.80% 83.95% 86.15% 86.4%  88.20%
Resnetd4 (He et al., 2016) Cifarl0  92.83% 86.10% 89.30% 90.50% 93.07%
VGG (Simonyan, 2014) Cifar10  9230% 84.1% 88.6% 91.50% 93.03%
C3 (Keskar et al., 2017) Cifar100 61.25% 51.50% 57.38% 57.5%  63.20%
WResnet16-4 (Zagoruyko, 2016)  Cifar100  73.70% 68.15% 69.05% 71.20% 73.57%
LB size Dataset SB LB® +LR® +GBN  +RA
ImageNet (AlexNet): 4096 ImageNet 57.10% 41.23% 53.25% 54.92% 59.5%
8192 ImageNet 57.10% 41.23% 53.25% 53.93% 59.5%
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Why weight distances increase logarithmically?

Loss surface: L (w)

Hypothesis:

During initial high
learning rate phase:
"random walk on a
random potential”

where
st 2 \/E (L (w) - L (w(0)))? ~ [w - w(0)]" 001
1 2 0.005
Marinarietal., 1983: W (t) ~ log7 (t) “ultra-slow diffusion” U..' |
0 5 10

[w-w(0)] 13



Ultra-slow diffusion: Basic idea

d”

Time to pass tallest barrier:

d

t o exp(d?)

= d X log% (1)
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Summary so far

* Q: Is there inherent generalization problem with large batches?
A: Observed: no, just adjust training regime.

* Q: What is the mechanism behind training dynamics?

IH

A: Hypothesis: "random walk on a random potentia

* Q: Can we reduce the total wall clock time?

A: Yes, in some models
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Significant speed-ups possible

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Goyal et al. (Facebook whitepaper, two weeks after us)
* Large scale experiments: ResNet over ImageNet, 256 GPUs
* Similar methods, except learning rate
* X29 times faster than a single worker

* More followed:
* Large Batch Training of Convolutional Networks (You et al.)
* ImageNet Training in Minutes (You et al.)
* Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (Akiba et al.)
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2) Why “Overfitting” is good for generalization?

* In contrast to common practice: good generalization results from
many gradient updates in an “overfitting regime”
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Peculiar generalization dynamics - summary

 Validation Loss increases

* Training error + loss goes to zero

* Weight Norm diverges

Looks like we are overfitting... but

 Validation error (classification) seems to never stop decreasing (slowly)

No need for early stopping (!)

How all of this makes sense?
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Why “Overfitting” is good for generalization?

e Can be shown to happen for logistic regression on separable data!
* Slow convergence to max-margin solution

The Implicit Bias of Gradient Descent on Separable Data (ICLR 2018)
 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Nati Srebro
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Main Theorem

Gradient descent on logistic loss: Aw = —nVL (w)

4 )
Theorem 1: W (t) = wlogt+ p(t) ,

w is the (L2) max margin vector

t) is bounded, for almost every dataset.
P y =,

Therefore: w (1) \ VTY
| w ()] |w|




... While expected loss (and test loss) increases
w (t) = wlogt + p (1)
Expected loss:

E[L (w)] = Q(logt).

Also true for test loss

Validation loss is expected to
increase, although accuracy may still
improve!
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3) The role of the final classifier

Fix your classifier: the marginal value of training the last
weight layer

Elad Hoffer, Itay Hubara, Daniel Soudry
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Fully connected classifier

We focus on the final representation obtained by the network
F before the classifier x = F(z; 8) (the last hidden layer) .

convolutions subsampling convolutio full

convolutions subsampling \\_)

subsampling

input 1st stage 2nd stage
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Fully connected classifier

* In common NN models, this representation is followed by an
additional affine transformation on x € R to all possible

classes C.
y=WT'x+b

 where the number of parameters is dependent on number of
classes W € RN*XC (can grow to be very large)



Fully connected classifier

Training is done using cross-entropy loss, by feeding the network outputs
through a softmax activation

B Zf eYi

and reducing the expected negative log likelihood with respect to ground-
truth target

(%)

,i1e{l,...,C}

C
L(x,t) = —logvy = —wy - & — by + log (Zew3'$+b3)

J

where w; is the i-th column of W.



Fully connected classifier?

But the final fully-connected transform is a linear classifier:
— The network learns features that are already separable at this point.

— They fully-connected layers are also notoriously redundant -- easily
compressed and discarded

Can they be removed completely?



Fixed classifier

* To evaluate our conjecture, we replaced the trainable
parameter matrix W with a fixed orthonormal projection

Q € RN*C such that QQT =1,

* As the rows of classifier weight matrix are fixed with an equal
L, norm, we also restrict the representation of x to reside on

the n-dimensional sphere
X

1xl2

X =



Fixed classifier

Since —1 < ¢q; -2 <1 and softmax function is scale-sensitive,
we introduce another temperature scaling coefficient «

Qi T+b;

V; = quaqj-;’&+bj’ 1 & {]_,,C}
J

and we minimize the loss:

C
X X
L(z,t) = —aq; - P -0y + log (E exp (Q’Qi' | b))




Hadamard classifier

The fixed orthogonal weights can be chosen to be a Hadamard
matrix:

HTH =nl,, He{-11}"

— A deterministic, low-memory and easily generated matrix that can be
used to classify.

— Removal of the need to perform a full matrix-matrix multiplication --
as multiplying by a Hadamard matrix can be done by simple sign
manipulation and addition.



Learned vs. Fixed classifier

We compare the training of a fully-learned classifier with a fixed
classifier (Cifar10, ResNet)

— Training error is lower when using a learned classifier.
— Both achieve the same accuracy on the validation set.

Training error Validation error
1072 4
] — |eamed classifier

- fixed classifier

107 -

Error

100 -

10%-1 4
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Empirical results

We find that this behavior remains in other datasets and models
— Negligible decrease in accuracy when final layer is fixed

— Reduces number of weights -- e.g ShuffleNet, where most of the
parameters are in the last layer

Network Dataset Learned  Fixed # Params % Fixed params
Resnets56 Cifar1io 93.03% 93.14% 855,770 0.07%
DenseNet(k=12)  Cifar1o0 77.73% 77.67% 800,032 4.2%

Resnets0 ImageNet 75.3% 75.3% 25,557,032  8.01%
DenseNet169 ImageNet 76.2% 76% 14,149,480  11.76%

ShuffleNet ImageNet 65.9% 65.4% 1,826,555 ‘52.56%\




Summary

Large batch training # generalization decrease

Validation loss increases # overfitting occurs

Validation error monotonically decreases: no early stopping
Linear classification layers have marginal effect on accuracy



Thank you for your time! Questions?

For more information, visit my page at:
www.Deeplearning.co.il
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