Rethinking Common Practices in Deep Learning

Elad Hoffer

Deep Learning practices

- Deep learning is evolving fast, while many fundamental questions remain unanswered
 - Many heuristics and intuition-guided decisions
 - It works!
 - But some may prove misguided

We'll cover 3 of these

- 1. The impact of batch-size on generalization
- 2. Early-stopping and determining "over-fitting"
- 3. The role of the last classification layer

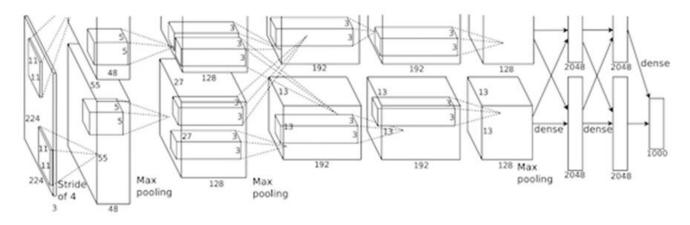
1) Closing the "generalization gap"

"Train longer, generalize better: closing the generalization gap in large batch training of neural networks" (NIPS 2017 oral) Elad Hoffer*, Itay Hubara*, Daniel Soudry

Better models - parallelization is crucial

• Model parallelism:

Split model (same data)



AlexNet [Krizhevsky et al. 2012]: model split on two GPUs

- Data parallelism:
- Split data (same model)

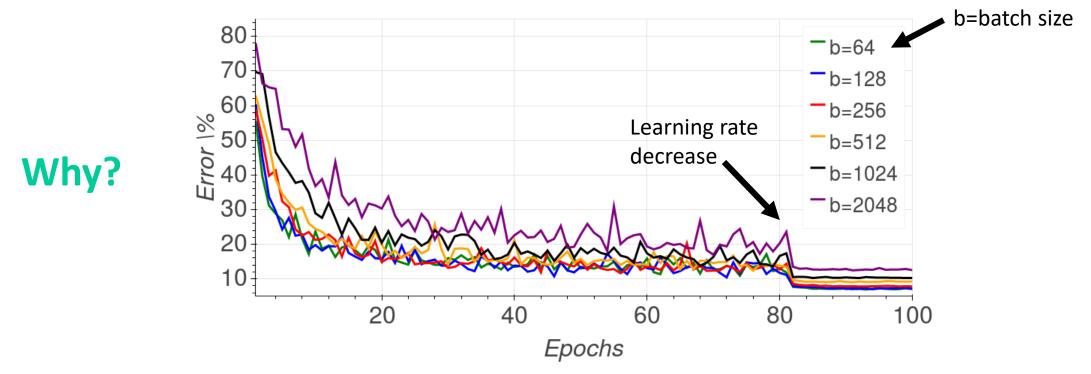
$$\Delta \mathbf{w} \propto -\frac{1}{b} \sum_{n=1}^{b} \nabla_{\mathbf{w}} L_n(\mathbf{w})$$

SGD: weight update proportional to gradients averaged over mini batch

Can we increase batch size and improve parallelization?

Large batch size hurts generalization?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum (+ gradient clipping)

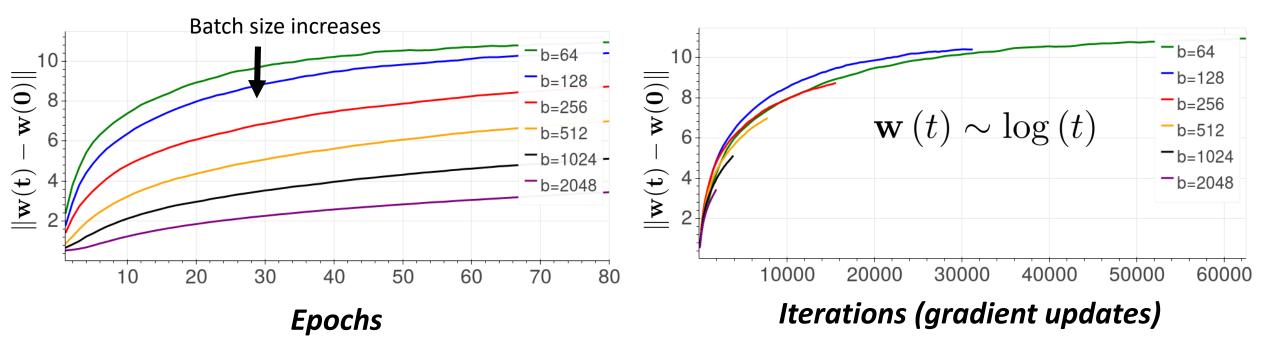


• Generalization gap persisted in models trained "without any budget or limits, until the loss function ceased to improve" [Keskar et al. 2017]

Observation

Weight distances from initialization increase

logarithmically with iterations



Why logarithmic behavior? Theory later...

Experimental details

- We experiment with various datasets and models
- Optimizing using SGD + momentum + gradient clipping
 - Usually generalize better than adaptive methods (e.g Adam)
 - Grad clipping effectively creates a "warm-up" phase
- Noticeable generalization gap between small and large batch

Network	Dataset	SB	LB
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%

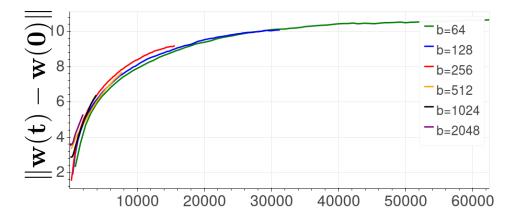
Closing the generalization gap (2/4)

- Adapt learning rate. In CIFAR $\propto \sqrt{b}$
 - Idea: mimic small batch gradient statistics (dataset dependent)
- Noticeably improves generalization, the gap remains

Network	Dataset	SB	LB	+LR
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%

Graph indicates: not enough iterations?

- Using these modifications distance from initialization now better matched
- However, graph indicates: insufficient iterations with large batch

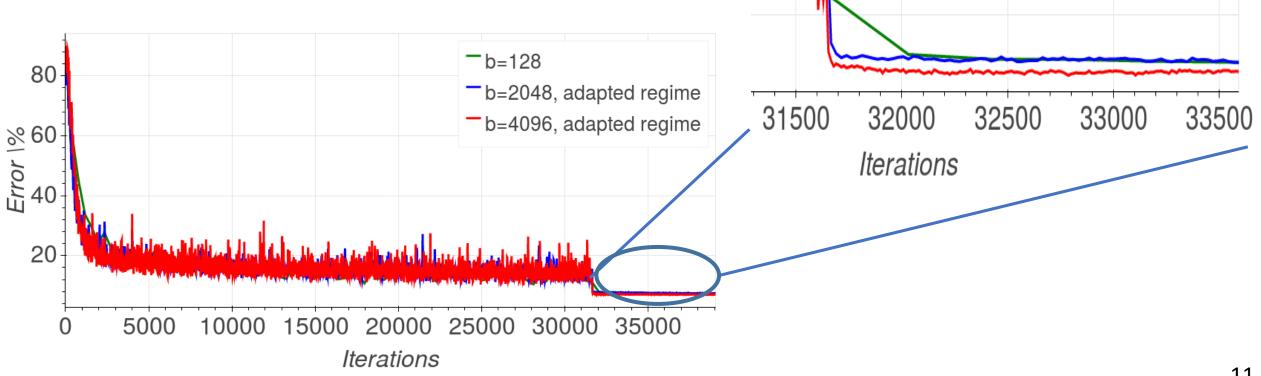


Iterations

Network	Dataset	SB	LB	+LR	+GBN
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%

Train longer, generalize better

• With sufficient iterations in "plateau" region, generalization gap vanish:



Closing the generalization gap (4/4)

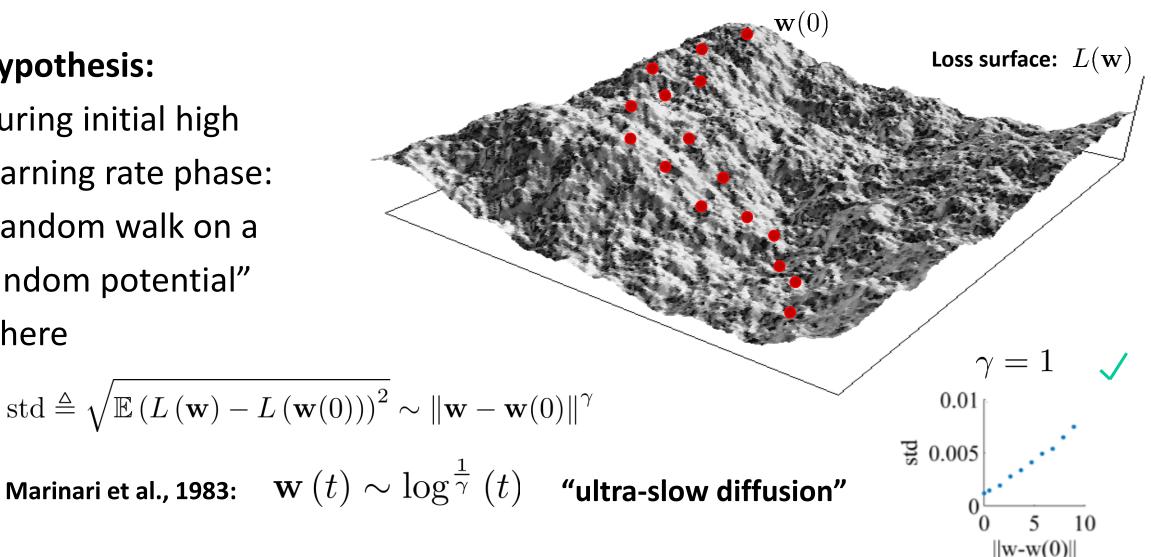
- Regime Adaptation train so that the number of iterations is fixed for all batch sizes (train longer number of epochs)
 - Completely closes the generalization gap

Network		Dataset	SB	LB	+LR	+GBN	+RA
F1 (Keskar et al., 2017)		MNIST	98.27%	97.05%	97.55%	97.60%	98.53%
C1 (Keskar et al., 2017)		Cifar10	87.80%	83.95%	86.15%	86.4%	88.20%
Resnet44 (He et al., 2016))	Cifar10	92.83%	86.10%	89.30%	90.50%	93.07%
VGG (Simonyan, 2014)		Cifar10	92.30%	84.1%	88.6%	91.50%	93.03%
C3 (Keskar et al., 2017)		Cifar100	61.25%	51.50%	57.38%	57.5%	63.20%
WResnet16-4 (Zagoruyko	, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%	73.57%
	LB size	Dataset	SB	LB^8	+LR ⁸	+GBN	+RA
ImageNet (AlexNet):	4096 8192	ImageNet ImageNet	57.10% 57.10%	41.23% 41.23%	53.25% 53.25%	54.92% 53.93%	59.5% 59.5%

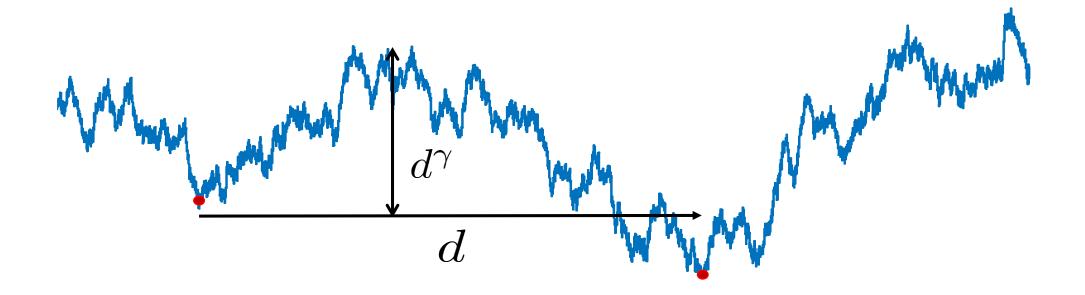
Why weight distances increase logarithmically?

Hypothesis:

During initial high learning rate phase: "random walk on a random potential" where



Ultra-slow diffusion: Basic idea



Time to pass tallest barrier: $t \propto \exp(d^{\gamma}) \qquad \Rightarrow d \propto \log^{\frac{1}{\gamma}}(t)$

Summary so far

- Q: Is there inherent generalization problem with large batches?
 A: Observed: no, just adjust training regime.
- Q: What is the mechanism behind training dynamics?
 A: Hypothesis: "random walk on a random potential"
- Q: Can we reduce the total wall clock time?
 A: Yes, in some models

Significant speed-ups possible

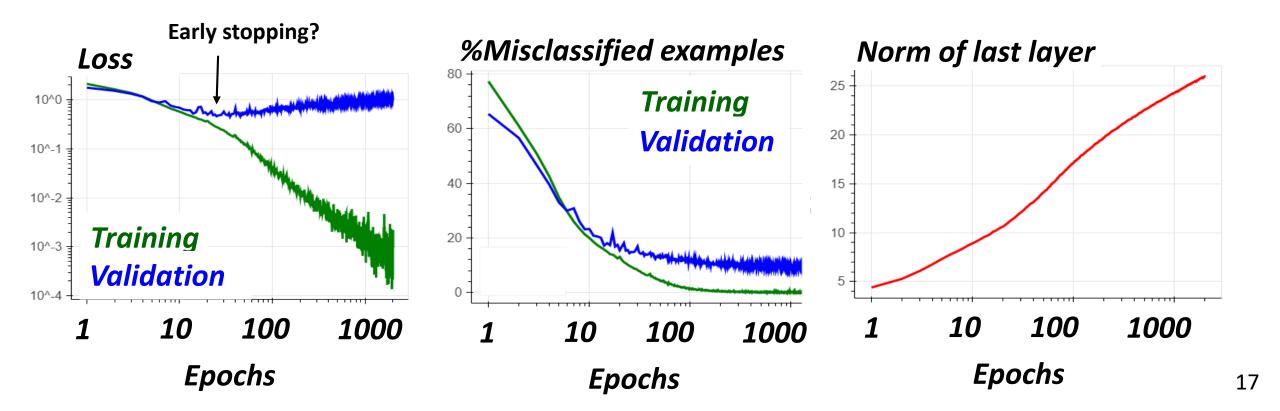
Accurate, Large Minibatch SGD: Training ImageNet in <u>1 Hour</u>

Goyal et al. (Facebook whitepaper, two weeks after us)

- Large scale experiments: ResNet over ImageNet, 256 GPUs
- Similar methods, except learning rate
- X29 times faster than a single worker
- More followed:
 - Large Batch Training of Convolutional Networks (You et al.)
 - ImageNet Training in Minutes (You et al.)
 - Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (Akiba et al.)

2) Why "Overfitting" is good for generalization?

 In contrast to common practice: good generalization results from many gradient updates in an "overfitting regime"



Peculiar generalization dynamics - summary

- Validation Loss increases
- Training error + loss goes to zero
- Weight Norm diverges

Looks like we are overfitting... but

• Validation error (classification) seems to never stop decreasing (slowly)

Conclusion: No need for early stopping (!)

How all of this makes sense?

Why "Overfitting" is good for generalization?

- Can be shown to happen for logistic regression on separable data!
- Slow convergence to max-margin solution

The Implicit Bias of Gradient Descent on Separable Data (ICLR 2018)

• Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Nati Srebro

Main Theorem

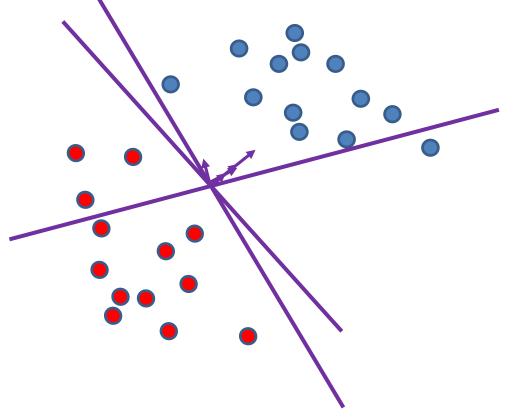
Gradient descent on logistic loss: $\Delta \mathbf{w} = -\eta \nabla \mathcal{L}(\mathbf{w})$

Theorem 1: $\mathbf{w}(t) = \hat{\mathbf{w}} \log t + \boldsymbol{\rho}(t)$,

 $\hat{\mathbf{w}}$ is the (L2) max margin vector $\boldsymbol{\rho}(t)$ is bounded, for almost every dataset.

Therefore:

$$\frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|} o \frac{\hat{\mathbf{w}}}{\|\hat{\mathbf{w}}\|}$$



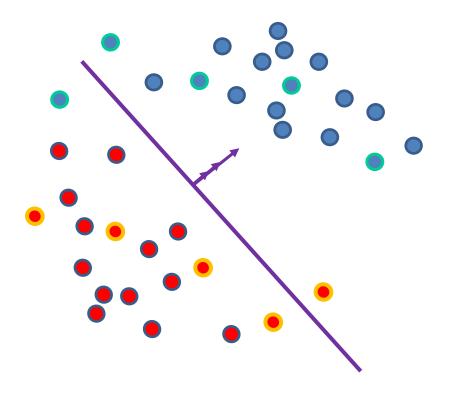
... While expected loss (and test loss) increases $\mathbf{w}(t) = \hat{\mathbf{w}} \log t + \boldsymbol{\rho}(t)$

Expected loss:

$$\mathbb{E}[\mathcal{L}(\mathbf{w})] = \Omega(\log t).$$

Also true for test loss

Validation loss is expected to increase, although accuracy may still improve!

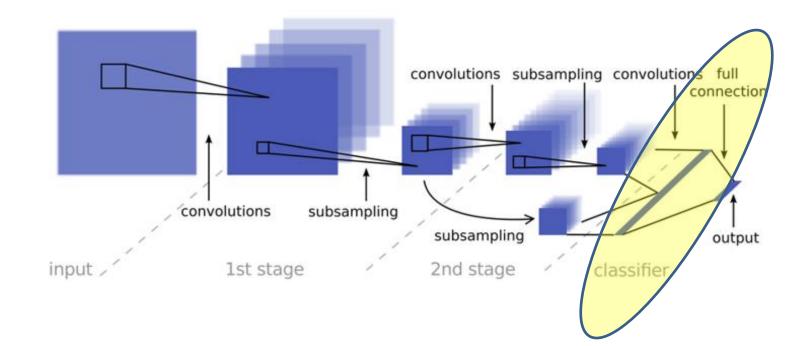


3) The role of the final classifier

Fix your classifier: the marginal value of training the last weight layer Elad Hoffer, Itay Hubara, Daniel Soudry

Fully connected classifier

We focus on the final representation obtained by the network F before the classifier $x = F(z; \theta)$ (the last hidden layer).



Fully connected classifier

• In common NN models, this representation is followed by an additional affine transformation on $x \in \mathbb{R}^{C}$ to all possible classes *C*.

$$y = W^T x + b$$

• where the number of parameters is dependent on number of classes $W \in \mathbb{R}^{N \times C}$ (can grow to be very large)

Fully connected classifier

Training is done using cross-entropy loss, by feeding the network outputs through a softmax activation

$$v_i = \frac{e^{y_i}}{\sum_j^C e^{y_j}}, \ i \in \{1, \dots, C\}$$

and reducing the expected negative log likelihood with respect to groundtruth target

$$\mathcal{L}(x,t) = -\log v_t = -w_t \cdot x - b_t + \log\left(\sum_{j=1}^{C} e^{w_j \cdot x + b_j}\right)$$

where w_i is the *i*-th column of W.

Fully connected classifier?

But the final fully-connected transform is a linear classifier:

- The network learns features that are already separable at this point.
- They fully-connected layers are also notoriously redundant -- easily compressed and discarded

Can they be removed completely?

Fixed classifier

• To evaluate our conjecture, we replaced the trainable parameter matrix W with a fixed orthonormal projection $Q \in \mathbb{R}^{N \times C}$ such that $QQ^T = I_n$

 As the rows of classifier weight matrix are fixed with an equal L₂ norm, we also restrict the representation of x to reside on the n-dimensional sphere

$$\widehat{x} = \frac{x}{\|x\|_2}$$

Fixed classifier

Since $-1 \le q_i \cdot \hat{x} \le 1$ and softmax function is scale-sensitive, we introduce another temperature scaling coefficient α

$$v_i = \frac{e^{\alpha q_i \cdot \hat{x} + b_i}}{\sum_j^C e^{\alpha q_j \cdot \hat{x} + b_j}}, \ i \in \{1, \dots, C\}$$

and we minimize the loss:

$$\mathcal{L}(x,t) = -\alpha q_t \cdot \frac{x}{\|x\|_2} + b_t + \log\left(\sum_{i=1}^C \exp\left(\alpha q_i \cdot \frac{x}{\|x\|_2} + b_i\right)\right)$$

Hadamard classifier

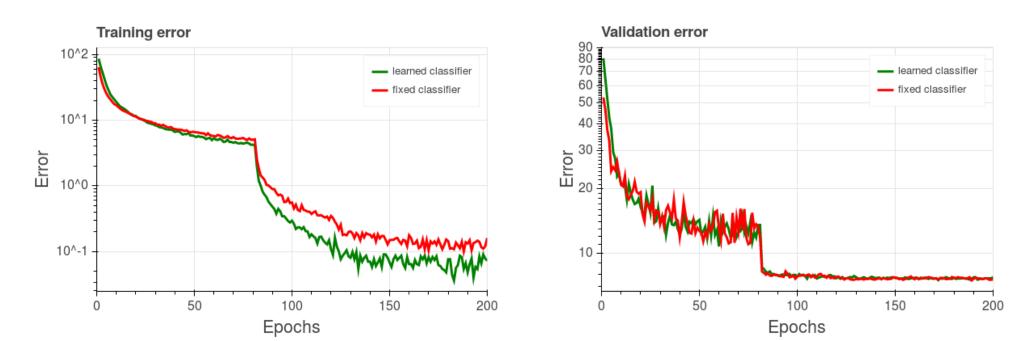
The fixed orthogonal weights can be chosen to be a Hadamard matrix:

$$H^T H = n I_n$$
, $H \in \{-1,1\}^n$

- A deterministic, low-memory and easily generated matrix that can be used to classify.
- Removal of the need to perform a full matrix-matrix multiplication -as multiplying by a Hadamard matrix can be done by simple sign manipulation and addition.

Learned vs. Fixed classifier

- We compare the training of a **fully-learned classifier** with a **fixed classifier** (Cifar10, ResNet)
 - Training error is lower when using a learned classifier.
 - Both achieve the same accuracy on the validation set.



Empirical results

We find that this behavior remains in other datasets and models

- Negligible decrease in accuracy when final layer is fixed
- Reduces number of weights -- e.g ShuffleNet, where most of the parameters are in the last layer

Network	Dataset	Learned	Fixed	# Params	% Fixed params
Resnet56	Cifar10	93.03%	93.14%	855,770	0.07%
DenseNet(k=12)	Cifar100	77·73 [%]	77.67%	800,032	4.2%
Resnet50	ImageNet	75·3 [%]	75·3%	25,557,032	8.01%
DenseNet169	ImageNet	76.2%	76%	14,149,480	11.76%
ShuffleNet	ImageNet	65.9%	65.4%	1,826,555	52.56%

Summary

- Large batch training *⇒* generalization decrease
- Validation loss increases ≠ overfitting occurs
- Validation error monotonically decreases: no early stopping
- Linear classification layers have marginal effect on accuracy

Thank you for your time! Questions?

For more information, visit my page at: www.DeepLearning.co.il