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Major Sub-Problems

Sensing:

Static objects: Road edge, curbs, guard rails, ...

Moving objects: Cars, pedestrians, ...

Semantic information: Lanes, traffic signs, traffic lights, ...

Mapping:

“Take me home”

Foresight

Robustness

Driving Policy:

Planning: e.g.
Change lane now because you need to take a highway exit soon
Slow down because someone is likely to cut into your lane

Negotiation: e.g.
Merge into traffic
Roundabouts, 4-way stops
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Challenges

Everything should run in real time

Difficult driving conditions

Robustness: No margin for severe errors

Unpredictable behavior of other drivers/pedestrians

Beyond “bounding box”: need to understand the entire image and
must utilize contextual information
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Example: Free Space
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Why Deep Learning ?

Why Learning?
Manual engineering is not powerful enough to solve complex problems

Why Deep Learning?
To solve hard problems, we must use powerful models

Why Are Deep Networks Powerful?

Theorem:
Any function that can be implemented by a Turing machine in T steps
can also be expressed by a T -depth network
Generalization:
Deep networks are both expressive and generalizing (meaning that the
learned model works well on unseen examples)
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Additional Benefits of Deep Learning

Hierarchical representations for every pixel (“pooling”)

Spatial sharing of computation (“convolutions”)

Accelerate computation by dedicated hardware (“lego”)

“Development language”: by designing architectures and loss
functions

Modeling of complex spatial-temporal structures (using RNNs)
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Is Deep Learning the Answer for Everything?

Current algorithms fail for some trivial problems
Parity of more than 30 bits
Multiplication of large numbers
Modeling of piece-wise curves
...

Main reason: Training a deep network is computationally hard, and
understanding when and why it works is a great scientific
mystery

In practice: Deep learning is useful only when it is combined with
smart modeling/engineering

In practice: Domain knowledge is very helpful

In practice: Architectural transfer only works for similar problems

In practice: Standard training algorithms are not always satisfactory
for automotive applications
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Example: Typical vs. Rare Cases
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Typical vs. Rare Cases
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Failures of Existing Methods for Rare Cases

State-of-the-art training methods are variants of Stochastic Gradient
Descent (SGD)

SGD is an iterative procedure

At each iteration, a random training example is picked

The random sample is used to estimate an update direction

The weights of the network are updated based on this direction
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Failures of Existing Methods for Rare Cases
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SGD finds an o.k. solution very fast, but significantly slows down at the
end. Why?

Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are
already correct by the model

High variance, even close to the optimum
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Requires Novel Algorithms
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Deep Learning for Driving Policy

Input: Detailed semantic environmental modeling

Output: Where to drive and an what speed
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Reinforcement Learning

Goal: Learn a policy, mapping from states to actions

Learning Process:
For t = 1, 2, . . .

Agent observes state st

Agent decides on action at based on the current policy

Environment provides reward rt

Environment moves the agent to next state st+1
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Reinforcement Learning vs. Supervised Learning

In SL, actions do not effect the environment, therefore we can collect
training examples in advance, and only then search for a policy

In SL, the effect of actions is local, while in RL, actions have
long-term effect

In SL we are given the correct answer, while in RL we only observe a
reward
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Reinforcement Learning: Existing Approaches

Most algorithms rely on Markovity — Next state only depends on
current state and action

Yields a Markov Decision Process (MDP) — Can couple all the future
into the so-called Q function

Inadequate for driving policy — Next state depends on other drivers
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A Decomposable Approach for Reinforcement Learning

Decompose the problem into
1 Supervised Learning problems

Predict the near future
Predict the intermediate reward

2 and then explicitly optimize over the policy using Recurrent Neural
Network
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A Decomposable Approach for Reinforcement Learning

If we could express R(B,⇡✓) as a differential function of ✓, we could have utilized the Stochastic Gradient Descent
(SGD) approach for maximizing (1). That is, starting with an initial ✓, at each iteration of SGD we first sample B,
then we calculate the gradient of

PT
t=1 Rt(B,⇡✓) with respect to ✓, and finally we update ✓ based on this gradient.

Our key observation is that by solving two SL problems, described below, we can approximate R(B,⇡✓) by a
differential function of ✓. Hence, we can implement SGD for learning ⇡✓ directly.

The goal of the first SL problem is to learn a deep neural network (DNN), that represents the mapping from a
(state,action) pair into the immediate reward value. We denote this DNN by DNNr and it is formally described as a
function DNNr : S ⇥ A ! R. We shall later explain how to learn DNNr using SL, but for now lets just assume
that we can do it and have the network DNNr such that DNNr(st, at) ⇡ rt. The goal of the second SL problem is
to learn a DNN that represents the mapping from (state,action) into the next state. Formally, this DNN is the function
DNNN : S ⇥ A ! S, and for now lets assume we managed to learn DNNN in a supervised manner such that
DNNN (st, at) ⇡ st+1.

Equipped with DNNr and DNNN we can describe the process of generating a random B and calculating R(B,⇡✓)
as follows. Initially, the simulator picks a seed for its pseudo random number generator and then it determines the initial
state s1. At round t, the agent receives st from the simulator and applies ⇡✓ to generate the action at = ⇡✓(st). The
simulator receives at and generates rt and st+1. At the same time, the agent applies DNNr to generate r̂t = DNNr(st)
and applies DNNN to generate ŝt+1 = DNNN (st). Let us denote ⌫t+1 = st+1 � ŝt+1. Therefore, if the simulator
receives ŝt+1 it can generate ⌫t+1 and send it to the agent.

A single round of this process is depicted below. The entire process is obtained by repeating the shaded part of
the picture T times. Solid arrows represent differentiable propagation of information while dashed arrows represent
non-differentiable propagation of information.
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Illustration
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Summary

The Deep Learning Revolution: Stunning empirical success in hard AI
tasks

Existing deep Learning algorithms fail for some trivial problems

Prior knowledge is still here, it just shifted its shape

A deeper theoretical understanding of deep learning is the most
important open problem in machine learning ...
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