Deep Learning for Autonomous Driving

Shai Shalev-Shwartz

Mobileye

IMVC dimension, March, 2016

S. Shalev-Shwartz is also affiliated with The Hebrew University

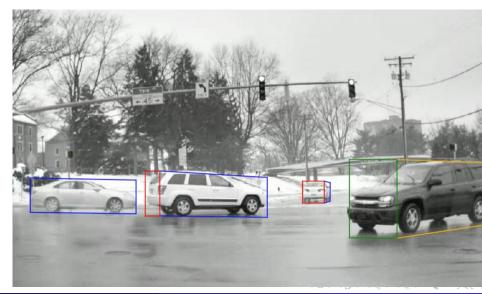
Shai Shalev-Shwartz (MobilEye)

DL for Autonomous Driving

IMVC'16 1 / 23

Autonomous Driving

Autonomous Driving



Shai Shalev-Shwartz (MobilEye)

DL for Autonomous Driving

IMVC'16 3 / 23

Major Sub-Problems

Sensing:

- Static objects: Road edge, curbs, guard rails, ...
- Moving objects: Cars, pedestrians, ...
- Semantic information: Lanes, traffic signs, traffic lights, ...

Major Sub-Problems

Sensing:

- Static objects: Road edge, curbs, guard rails, ...
- Moving objects: Cars, pedestrians, ...
- Semantic information: Lanes, traffic signs, traffic lights, ...

Mapping:

- "Take me home"
- Foresight
- Robustness

Major Sub-Problems

Sensing:

- Static objects: Road edge, curbs, guard rails, ...
- Moving objects: Cars, pedestrians, ...
- Semantic information: Lanes, traffic signs, traffic lights, ...

Mapping:

- "Take me home"
- Foresight
- Robustness

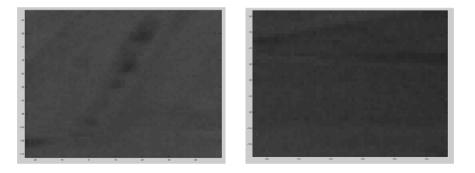
Driving Policy:

- Planning: e.g.
 - Change lane now because you need to take a highway exit soon
 - Slow down because someone is likely to cut into your lane
- Negotiation: e.g.
 - Merge into traffic
 - Roundabouts, 4-way stops

- Everything should run in real time
- Difficult driving conditions
- Robustness: No margin for severe errors
- Unpredictable behavior of other drivers/pedestrians
- Beyond "bounding box": need to understand the entire image and must utilize contextual information

Example: Free Space

Where can I drive ?



DL for Autonomous Driving

Example: Free Space

Where can I drive ?

Need context !

Shai Shalev-Shwartz (MobilEye)

DL for Autonomous Driving

IMVC'16 7 / 23

Manual engineering is not powerful enough to solve complex problems

Manual engineering is not powerful enough to solve complex problems

• Why Deep Learning?

To solve hard problems, we must use powerful models

Manual engineering is not powerful enough to solve complex problems

• Why Deep Learning?

To solve hard problems, we must use powerful models

• Why Are Deep Networks Powerful?

Manual engineering is not powerful enough to solve complex problems

• Why Deep Learning?

To solve hard problems, we must use powerful models

• Why Are Deep Networks Powerful?

• Theorem:

Any function that can be implemented by a Turing machine in T steps can also be expressed by a $T\mbox{-depth}$ network

Manual engineering is not powerful enough to solve complex problems

• Why Deep Learning?

To solve hard problems, we must use powerful models

• Why Are Deep Networks Powerful?

• Theorem:

Any function that can be implemented by a Turing machine in T steps can also be expressed by a T-depth network

• Generalization:

Deep networks are both expressive and generalizing (meaning that the learned model works well on **unseen examples**)

- Hierarchical representations for every pixel ("pooling")
- Spatial sharing of computation ("convolutions")
- Accelerate computation by dedicated hardware ("lego")
- "Development language": by designing architectures and loss functions
- Modeling of complex spatial-temporal structures (using RNNs)

Is Deep Learning the Answer for Everything?

- Current algorithms fail for some trivial problems
 - Parity of more than 30 bits
 - Multiplication of large numbers
 - Modeling of piece-wise curves
 - ...

Is Deep Learning the Answer for Everything?

- Current algorithms fail for some trivial problems
 - Parity of more than 30 bits
 - Multiplication of large numbers
 - Modeling of piece-wise curves
 - ...
- Main reason: Training a deep network is computationally hard, and understanding when and why it works is a great scientific mystery

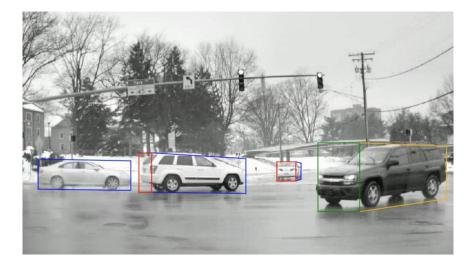
Is Deep Learning the Answer for Everything?

- Current algorithms fail for some trivial problems
 - Parity of more than 30 bits
 - Multiplication of large numbers
 - Modeling of piece-wise curves
 - ...
- Main reason: Training a deep network is computationally hard, and understanding when and why it works is a great scientific mystery

- In practice: Deep learning is useful only when it is combined with smart modeling/engineering
- In practice: Domain knowledge is very helpful
- In practice: Architectural transfer only works for similar problems
- In practice: Standard training algorithms are not always satisfactory for automotive applications

Shai Shalev-Shwartz (MobilEye)

Example: Typical vs. Rare Cases



Shai Shalev-Shwartz (MobilEye)

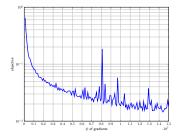
DL for Autonomous Driving

Typical vs. Rare Cases

(日) (同) (三) (三)

- State-of-the-art training methods are variants of Stochastic Gradient Descent (SGD)
- SGD is an iterative procedure
- At each iteration, a random training example is picked
- The random sample is used to estimate an update direction
- The weights of the network are updated based on this direction

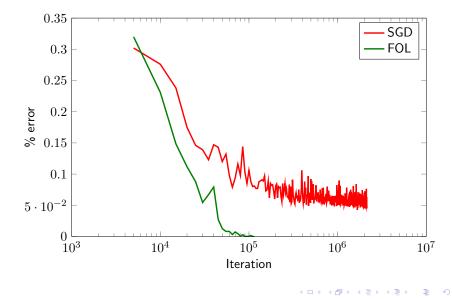
Failures of Existing Methods for Rare Cases



SGD finds an o.k. solution very fast, but significantly slows down at the end. Why?

- Rare mistakes: Suppose all but 1% of the examples are correctly classified. SGD will now waste 99% of its time on examples that are already correct by the model
- High variance, even close to the optimum

Requires Novel Algorithms



- Input: Detailed semantic environmental modeling
- Output: Where to drive and an what speed

Goal: Learn a policy, mapping from states to actions

Learning Process:

For t = 1, 2, ...

- Agent observes state s_t
- Agent decides on action a_t based on the current policy
- Environment provides reward r_t
- Environment moves the agent to next state s_{t+1}

- In SL, actions do not effect the environment, therefore we can collect training examples in advance, and only then search for a policy
- In SL, the effect of actions is local, while in RL, actions have long-term effect
- In SL we are given the correct answer, while in RL we only observe a reward

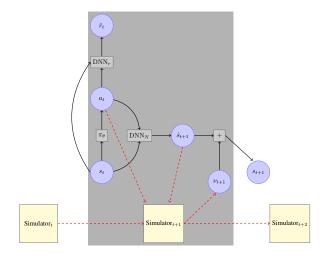
- Most algorithms rely on Markovity Next state only depends on current state and action
- Yields a Markov Decision Process (MDP) Can couple all the future into the so-called Q function

- Most algorithms rely on Markovity Next state only depends on current state and action
- Yields a Markov Decision Process (MDP) Can couple all the future into the so-called Q function
- Inadequate for driving policy Next state depends on other drivers

Decompose the problem into

- Supervised Learning problems
 - Predict the near future
 - Predict the intermediate reward
- and then explicitly optimize over the policy using Recurrent Neural Network

A Decomposable Approach for Reinforcement Learning

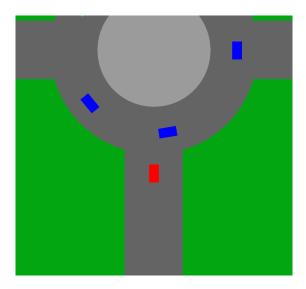


Shai Shalev-Shwartz (MobilEye)

DL for Autonomous Driving

IMVC'16 21 / 23

Illustration



Shai Shalev-Shwartz (MobilEye)

DL for Autonomous Driving

< ■ ■ ● ■ 一 ○ Q (IMVC'16 22 / 23

- The Deep Learning Revolution: Stunning empirical success in hard Al tasks
- Existing deep Learning algorithms fail for some trivial problems
- Prior knowledge is still here, it just shifted its shape
- A deeper theoretical understanding of deep learning is the most important open problem in machine learning ...