
Deep Learning on
Everyday Devices

Amir Alush, CTO & co founder, IMVC 2018

Deep Learning “Cycle”

untrained model

new data
(test)

training
data

trained model

car

car pedestrian

Yes No

car

TRAINING INFERENCE

Inference on Everyday devices

8-Core ARM Qualcomm 6-core

Snapdragon 820 TBD

ARM

x86

MIPS

Power
other

Embedded processors market share (Source: AMD 2016)

Inference on the Edge

Motivation

● Low Latency
● Keep Privacy
● Small/no Bandwidth
● Utilizing Existing HW

Challenges

● NN High complexity
● Low HW resources
● Complex porting

The Deep Learning Stack

HARDWARE
GPU, CPU, TPU, FPGA, DSP, ASIC

Primitives Libraries
BLAS*, NNPACK,CUDNN

Frameworks
TF, CAFFE, PyTorch, MXNet

Algorithms
NN Architectures, Meta-Architectures

Engines
TensorRT, Core ML, SNPE

It’s the algorithms!

Efficient algorithms:

1. More AI on any processor
2. Critical for everyday devices with low power processors

Speed-accuracy tradeoff

Running off-the-shelf DL algorithms on the edge
requires sacrificing accuracy. The tradeoffs:

1. Reduce input resolution → reduce accuracy
2. Reduce model size (backbone) → reduce accuracy
3. Reduce model bit precision → reduce accuracy?
4. Less accurate algorithm

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application”, Howard et al. 2017
“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”, Sandler et al. 2018

mAP GPU msecs

faster-rcnn + resnet 101 + high resolution 35.6 140

ssd + mobilenetV1 + low resolution 18.8 50

Reduce network size (pruning)

● Should be structured, non structured is usually not HW supported
● Requires re-training
● How effective on already small models?
● Can hurt accuracy!

“Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks”, Mittal 2018

Reduce model bit precision (quantization)

● Reduce from 32 bits to 8/4/2/1 bits ?
● Activations & Weights are within a narrow range
● Networks are robust to small changes
● 8 bits:

○ Need to be supported in processors instructions
○ Reduces DRAM bandwidth (more in the SRAM)
○ Supported natively by various engines

● Below 8 bits:
○ Accuracy drops
○ Not supported in existing HW

How to deploy your models?
Training Frameworks Inference Engines

● Research flexibility:
○ Fast POC from idea to results
○ Easy to extended: new data loaders, layers

(loss, operations)
○ Easy debugging

● Good training speed (+ parallelization)
○ Fast research iterations

● Large active community:
○ Explore new research ideas fast

● Personal flavour
● Portability should not a factor

● Optimized for latency (forward pass)
● Should be efficient on a specific hardware

○ Takes advantage of specific hw
instructions

● Little / no overhead
● Efficient working memory
● Small code size
● Support all of your NN layers

Training frameworks vs Inference Engines

Build your own Inference Environment?

1. Use the engines (TensorRT, SNPE...):
○ Faster to production (if the conversion works out of the box)
○ Current generation has some limitations and minimal tech support
○ Not as mature as the training frameworks or DL primitives libraries
○ Not all NN capabilities are supported

2. Write your own inference engine:
○ Slower to production, but, with low risk
○ Use the DL primitives libraries (CuDNN, BLAS, NNPACK..) they are more matures than the

engines and they are optimized!
○ You’ll need to write your own logic on top!
○ You’re in control and can adjust to your needs

Brodmann17 R&D workflow

DeployData Research

Brodmann17 Use Case - IoT

● MWC 2018 recent cooperation with &
● Embedded World 2018 with
● CES 2018 with

Brodmann17 Use Case - Smart City

* 1 CPU core

Brodmann17 Use Case - Adas

Benchmarking on the KITTI dataset car detection

* 1 CPU core

Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite, Geiger et al, 2012

1. motivation and challenges in NN edge processing

2. Speed accuracy tradeoffs made today

3. Brodmann17 key design principles for keeping efficiency and accuracy
on the edge

4. key considerations when choosing your inference environment
5. Brodmann17 example use cases

Summary

