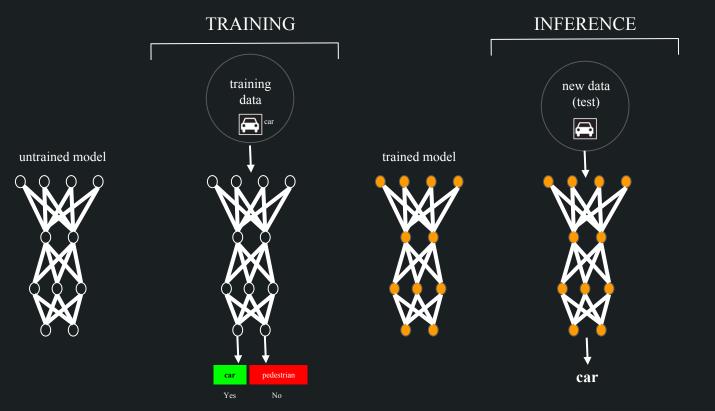
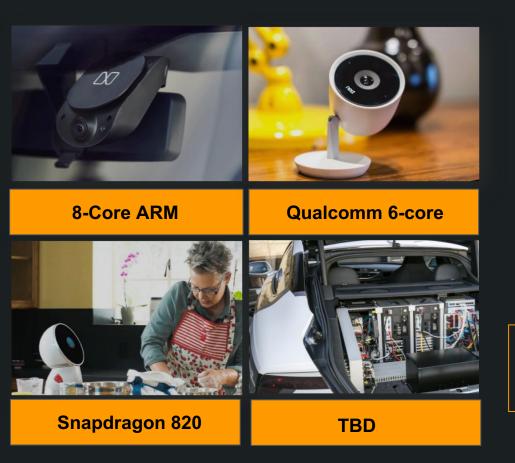
Deep Learning on Everyday Devices

Amir Alush, CTO & co founder, IMVC 2018

Deep Learning "Cycle"



Inference on Everyday devices



Embedded processors market share (Source: AMD 2016)



Qualcomm Kryo (2.15GHz): 17.2 GFLOPS,

2.05Watts

TitanXP: 12 TeraFlops, 250W

Inference on the Edge

Motivation

- Low Latency
- Keep Privacy
- Small/no Bandwidth
- Utilizing Existing HW

- NN High complexity
- Low HW resources
- Complex porting

The Deep Learning Stack

Algorithms

NN Architectures, Meta-Architectures

Frameworks TF, CAFFE, PyTorch, MXNet

Engines TensorRT, Core ML, SNPE Primitives Libraries BLAS*, NNPACK, CUDNN

HARDWARE GPU, CPU, TPU, FPGA, DSP, ASIC

It's the algorithms!

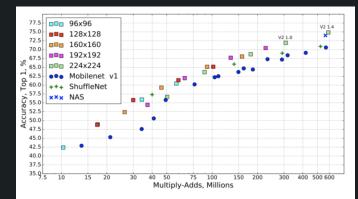
Efficient algorithms:

- 1. More AI on any processor
- 2. Critical for everyday devices with low power processors

Speed-accuracy tradeoff

Running off-the-shelf DL algorithms on the edge requires sacrificing accuracy. The tradeoffs:

- Reduce input resolution \rightarrow reduce accuracy
- Reduce model size (backbone) \rightarrow reduce accuracy 2.
- Reduce model bit precision \rightarrow reduce accuracy? 3.
- Less accurate algorithm 4.



~	Model	Top-1 accuracy	Num. Params.
curacy?	VGG-16	71.0	14,714,688
•	MobileNet	71.1	3,191,072
	Inception V2	73.9	10,173,112
	ResNet-101	76.4	42,605,504
	Inception V3	78.0	21,802,784
	Inception Resnet V2	80.4	54,336,736
		mAP	GPU msecs
faster-rcnn + resnet 10)1 + high resolution	35.6	140
ssd + mobilenetV1 + low resolution		18.8	50

Reduce network size (pruning)

- Should be structured, non structured is usually not HW supported
- Requires re-training
- How effective on already small models?
- Can hurt accuracy!

Faster-RCNN	Baseline	25 %	50%	75%
mAP	0.66	0.655	0.648	0.530
fps	7.5	10	13	16

Table 6: Object detection results when directly pruning(random) a fully trained Faster-RCNN model.

Heuristics	25 %	50%	75%
Random	0.647	0.600	0.505
Mean Activation	0.647	0.601	0.489
Entropy	0.635	0.584	0.501
Scaled Entropy	0.640	0.593	0.507
l_1 -norm	0.628	0.608	0.520
APoZ	0.646	0.598	0.514
Sensitivity	0.636	0.592	0.485

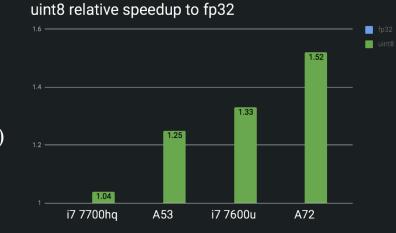
Table 5: Object detection results obtained by plugging-in different pruned VGG-16 models into Faster-RCNN.

Brodmann

"Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks", Mittal 2018

Reduce model bit precision (quantization)

- Reduce from 32 bits to 8/4/2/1 bits ?
- Activations & Weights are within a narrow range
- Networks are robust to small changes
- 8 bits:
 - Need to be supported in processors instructions
 - Reduces DRAM bandwidth (more in the SRAM)
 - Supported natively by various engines
- Below 8 bits:
 - Accuracy drops
 - Not supported in existing HW



How to deploy your models?

Training Frameworks

- Research flexibility:
 - Fast POC from idea to results
 - Easy to extended: new data loaders, layers (loss, operations)
 - Easy debugging
- Good training speed (+ parallelization)
 - Fast research iterations
- Large active community:
 - Explore new research ideas fast
- Personal flavour
- Portability should not a factor

Inference Engines

- Optimized for latency (forward pass)
- Should be efficient on a specific hardware
 - Takes advantage of specific hw instructions
- Little / no overhead
- Efficient working memory
- Small code size
- Support all of your NN layers

Training frameworks vs Inference Engines

Relative speedup to CaffeV1 - Raspberry PI 3



2 ResNet50 1.5 1.67 NetX 1.5 Caffe-v1 PyTorch framework TensorRT engine

Relative speedup to CaffeV1 - GTX1070

Build your own Inference Environment?

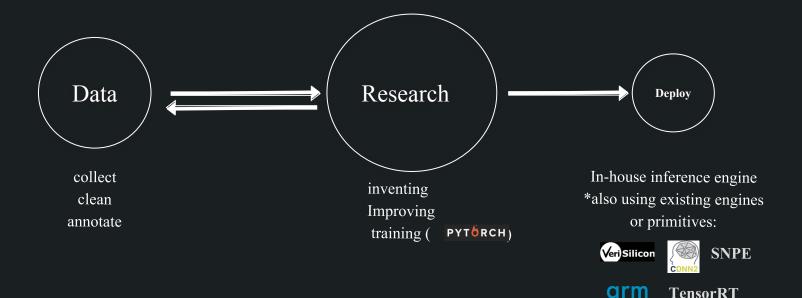
1. Use the engines (TensorRT, SNPE...):

- Faster to production (if the conversion works out of the box)
- Current generation has some limitations and minimal tech support
- Not as mature as the training frameworks or DL primitives libraries
- Not all NN capabilities are supported

2. Write your own inference engine:

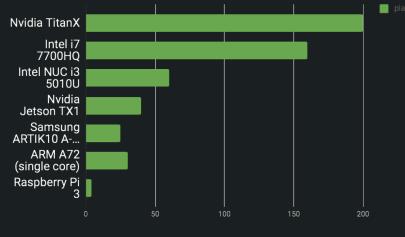
- Slower to production, but, with low risk
- Use the DL primitives libraries (CuDNN, BLAS, NNPACK..) they are more matures than the engines and they are optimized!
- You'll need to write your own logic on top!
- You're in control and can adjust to your needs

Brodmann17 R&D workflow



TensorRT

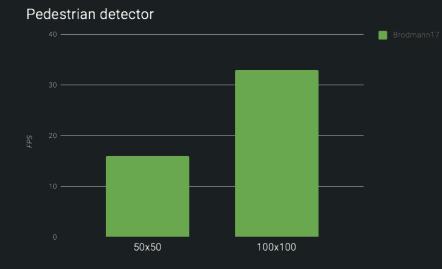
Brodmann17 Use Case - IoT



FPS

- MWC 2018 recent cooperation with intuition robotics & arm
- Embedded World 2018 with INTERNSYC
- CES 2018 with CEVA

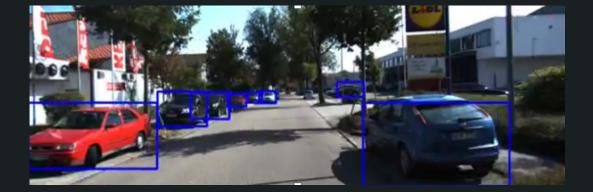
Brodmann17 Use Case - Smart City



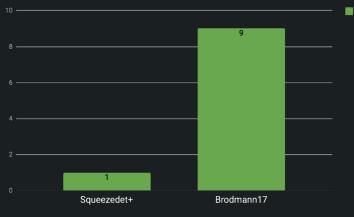
* 1 CPU core

Brodmann17 Use Case - Adas

Benchmarking on the KITTI dataset car detection



Speedup compared to squeezedet+ (cpu)



* 1 CPU core

Brodmann¹/₂

Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite, Geiger et al, 2012

Summary

- 1. motivation and challenges in NN edge processing
- 2. Speed accuracy tradeoffs made today
- 3. Brodmann17 key design principles for keeping efficiency and accuracy on the edge

- 4. key considerations when choosing your inference environment
- 5. Brodmann17 example use cases