Deep Learning on
Everyday Devices

Amir Alush, CTO & co founder, IMVC 2018

Brodmannv

Deep Learning “Cycle”

TRAINING INFERENCE
| | |
training new data
data (test)
untrained model l trained model l

n pedestrian car
Yes No

Brodmannv

Inference on Everyday devices

Embedded processors market share (Source: AMD 2016)

other

Power

MIPS

) (4 |E PP
' = 1= Q Qualcomm Kryo (2.15GHz): 17.2 GFLOPS,
. & 5 B 2.05Watt
: \ o atts
TBD

_ TitanXP: 12 TeraFlops, 250W
Brodmannv

Inference on the Edge

Motivation Challenges
e Low Latency e NN High complexity
e Keep Privacy e Low HW resources
e Small/no Bandwidth e Complex porting
e Utilizing Existing HW

Brodmannv

The Deep Learning Stack

Algorithms
NN Architectures, Meta-Architectures

Frameworks
TF, CAFFE, PyTorch, MXNet

Engines Primitives Libraries
TensorRT, Core ML, SNPE BLAS* NNPACK,CUDNN

HARDWARE
GPU, CPU, TPU, FPGA, DSP, ASIC

Brodmannv

It’s the algorithms!

Efficient algorithms:

1. More Al on any processor
2. Critical for everyday devices with low power processors

Brodmannv

Speed-accuracy tradeoff

oO0o 96x96
mEm 128x128
pE@ 160x160

mEg 192x192
0O0p 224x224

Running off-the-shelf DL algorithms on the edge 25312 e

requires sacrificing accuracy. The tradeofts:

Reduce input resolution — reduce accuracy

30 40 50 75 100 150 200
Multiply-Adds, Millions

Reduce model size (backbone) — reduce accuracy

Top-1 accuracy

B L=

Reduce model bit precision — reduce accuracy? 71.0
. MobileNet 71.1
Less accurate algorithm Inception V2 73.9

ResNet-101 76.4
Inception V3 78.0
Inception Resnet V2 80.4

300 400 500 600

Num. Params.
14,714,688
3,191,072
10,173,112
42,605,504
21,802,784
54,336,736

I NV AT

faster-rcnn + resnet 101 + high resolution

ssd + mobilenetV1 + low resolution

lobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application”, Howard et al. 2017 y
nverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”, Sandler et al. 2018 ‘

Reduce network size (pruning)

Should be structured, non structured is usually not HW supported
Requires re-training
How effective on already small models?

Can hurt accuracy!

Heuristics 25% 50% 15%

Random 0.647 0.600 0.505
Mean Activation 0.647 0.601 0.489
Entropy 0.635 0.584 0.501
Scaled Entropy ~ 0.640 0.593 0.507
[1-norm 0.628 0.608 0.520
APoZ 0.646 0.598 0.514
Sensitivity 0.636 0.592 0.485

Faster-RCNN Baseline 25% 50% 75%
mAP 0.66 0.655 0.648 0.530
fps 1.5 10 13 16

Table 6: Object detection results when directly pruning
(random) a fully trained Faster-RCNN model.

Table 5: Object detection results obtained by plugging-in
different pruned VGG-16 models into Faster-RCNN.

“Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks”. Mittal 2018 BrOdman n y‘

Reduce model bit precision (quantization)

Reduce from 32 bits to 8/4/2/1 bits ?

Activations & Weights are within a narrow range uint8 relative speedup to fp32

Networks are robust to small changes o
8 bits:
o Need to be supported in processors instructions
o Reduces DRAM bandwidth (more in the SRAM) | i
104

o Supported natively by various engines
Below 8 bits:

o Accuracy drops

o Not supported in existing HW

i7 7700hq A53 i7 7600u A72

Brodmannv

How to deploy your models?

Training Frameworks Inference Engines
e Research flexibility: e Optimized for latency (forward pass)
o Fast POC from idea to results e Should be efficient on a specific hardware
o Easy to extended: new data loaders, layers o Takes advantage of specific hw
(loss, operations) instructions
o FEasy debugging e Little / no overhead
e (Good training speed (+ parallelization) e Efficient working memory
o Fast research iterations e Small code size
e [arge active community: e Support all of your NN layers

o Explore new research ideas fast
e Personal flavour

Brodmannv

Training frameworks vs Inference Engines

Relative speedup to CaffeV1 - Raspberry Pl 3 Relative speedup to CaffeV1 - GTX1070
2.5 B SqueezeNet
2
1.5
0.5
0 0
CaffeV1 framework Brodmann17 engine fg?;g,‘grk f,'?,q;’v'v%'}k TensorRT engine

Brodmannv

Build your own Inference Environment?

1. Use the engines (TensorRT, SNPE...):
o Faster to production (if the conversion works out of the box)
o Current generation has some limitations and minimal tech support
o Not as mature as the training frameworks or DL primitives libraries
o Not all NN capabilities are supported

2. Write your own inference engine:
o Slower to production, but, with low risk
o Use the DL primitives libraries (CuDNN, BLAS, NNPACK..) they are more matures than the
engines and they are optimized!
o You’ll need to write your own logic on top!
You’re in control and can adjust to your needs

Brodmannv

Brodmannl7 R&D workflow

— Research ——b@
%

collect) , In-house inference engine
mnventing * . 2]
clean) also using existing engines
Improving

training (PYTORCH)

or primitives:

annotate

TensorRT

Brodmannv

Brodmannl7 Use Case - [oT

Nvidia TitanX

Intel i7
7700HQ

Intel NUC i3
5010U

Nvidia
Jetson TX1 -
Samsung
ARTIK10 A-...

ARM A72
(single core) -
Raspberry Pi l
3

0 50 100 150 200

FPS

e MWC 2018 recent cooperation with & arm
e Embedded World 2018 with
e CES 2018 with CEVA

Brodmannv

Brodmannl7 Use Case - Smart City

Pedestrian detector T | %0 el 4

50x50 100x100

* 1 CPU core

Brodmannv

Brodmannl7 Use Case - Adas

Benchmarking on the KITTI dataset car detection Easy Medium
Brodmann17 90.63
Squeezedet+ 90.4

Speedup compared to squeezedet+ (cpu)
10 [|

0

Squeezedet+ Brodmann17

* 1 CPU core

Are we readv for Autonomous Drivine? The KITTI| Vision Benchmark Suite. Geiger et al. 2012 BrOdman “ n

Summary

1. motivation and challenges in NN edge processing
2. Speed accuracy tradeoffs made today

3. Brodmannl7 key design principles for keeping efficiency and accuracy
on the edge

4. key considerations when choosing your inference environment
5. Brodmannl7 example use cases

Brodmannv

