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Elad Richardson, Tomer Ronen, Niv Geron, Zach Avraham, Alon Palombo and Yaniv Azar



So what is text detection?
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What makes it difficult?

Scale Variability Density Irregular Shapes
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So how do we solve it?

e Anchor-based methods dominate the Object Detection world

o Widely used for Text Detection as well
e But Semantic Segmentation is getting pretty common

o Works pretty good for text (Tagging is tight) oK E SK

o Better support for rotations and irregular text A]Y .STxLLES/H
e Tends to connect words

o Solved using different regularizations
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__ NOT MY PROBLEM.

Image from Polzounov et al, WordFence




How can we improve our baseline?

ICDAR15 Benchmark

EAST 0.73 0.83 0.78

e Simply run Multi-Scale
o Using predefined scales (0.5,0.7, 1, 1.4, 2)

o Each scale captures different text regions

e But takes much more time

o Not practical in many scenarios &=




Can we do better?

e Base Scaleis enough for “Coarse Detection”
e What if we filter background regions? (&)
o Get a compactimage representation G R E E K
e Apply Multi-Scale only on regions of interest COOKEKY
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Can we do even better?

e Text detection works pretty well under the right scale

o But we don't know the scale of each region &=

e So why not learn it?

o Canresize all text to the desired scale!
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Our Solution In a Nutshell

e We already do a single forward pass

o Let's gather some information there (segmentation + scale)

e Use it to create the “optimal scale”

o And do only one additional forward pass &
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So what does it take?

Cross Entropy
Loss

Segmentation
Head




The Packing Problem

e How can we pack the blobs efficiently?

o Use a 2D Knapsack solution

o Specifically, the “Maximal Rectangles Best Short
Side Fit” algorithm

e But knapsack images are not realistic

o Add a knapsack augmentation to training!
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Results!
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How does it compare?

You Only Scale Once

Multi-Scale

oo | Reca | presson | Fseore |

Baseline 41.47% 46.09% 43.81%
Ours 59.12% 51.25% 54 .91%
Multiscale 59.7% 30.56% 40.42%



Conclusion

e A simple technique to boost single-scale methods

o  Without the overhead of running in multiscale &

e Easily applied on top of any text detection algorithm

o And possible general object detection

e (Code available soon ©
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