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What is Reinforcement Learning

Learning from self-experience.

environment

from state s, take action @

RL can learn:

Unknown game rules

Delayed rewards, no supervision

Actions affect the environment

get reward R, new state s’
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What is Reinforcement Learning

* Learning from self-experience.

* Recent achievements:
- Superhuman performance in many games:

- Chess, Go, Atari games, Control problemes, ...
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The mission

Teach a vehicle to drive in a specific off-road area. 3D Model of the training area

- Will be tested in the training area only.

‘ ©0000®

Proprietary of Rafael — Advanced Defense Systems Ltd Ref.:



The mission

3D Model of the training area

Supervised Learning Requires large annotated
datasets.

* Physical RL is too slow and unsafe
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The mission

3D Model of the training area

Solution: Copy-Paste the environment!
- realistic 3D modelling from aerial images
- RL Training inside the model

- Bonus: driving in currently un-approachable areas.
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The challenge

Navigation

* Driving involves two tasks: Navigation and Avoidance

Both affect location and pose

Navigation — Path planning Obstacle avoidance {w 2~

strategical task tactical task m\h s

|||||||||||

sparse rewards dense rewards

geometric input visual input

* Doing both together is hard
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Our Solution: split

Navigation - Before mission

Current Target
location location

Navigation

system
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Our Solution: split

Avoidance - During mission

Rendered Image

Current Target
location location

RL Agent

Driving
Decision
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Navigation — Before mission

1. 3D model
geometry
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Navigation — Before mission

1. 3D model 2. Segmentation
geometry by passability

3D model
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Navigation — Before mission

1. 3D model 2. Segmentation 3. Watershed:
geometry by passability trails + width

3D model
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Navigation — Before mission

4. Remove
narrow trails
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Navigation — Before mission

4. Remove 5. Shortest path
narrow trails
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Navigation — Before mission

4. Remove 5. Shortest path 6. Track summary :
: . waypoints
narrow trails to way-points

32,6532  35.6686

32,6638 35.2684
323530 35.4683
» 32.8532 35.2784

32,6535  35.2694
32,6236  35.2680

32,2538  35.2683
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Avoidance - During mission

* In each driving step:

- The model is rendered to the agent location
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Avoidance - During mission

- The agent pose is such that the next waypoint
is always in front of it.
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Avoidance - During mission

- The agent uses the rendered image to avoid
obstacles, while “unknowingly” progress
towards the target.
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Avoidance - During mission

* We wrapped the driving simulator with a

game with scores, and trained RL agent.
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Training

e Compared 3 SOTA Actor-Critic based RL algorithms:

o P

84

\‘;\ 5
-

x84

PPO Proximal Policy Optimization '”;ifm
Batch Norm
A2C Advantage Actor Critic - :e:LCJNN

Batch Norm
RelLU

ACKRT Actor Critic using Kronecker-factored Trust Region

64 3x3 CNN

Batch Norm
RelLU

° 32*7*7 FC

representation

CRITIC

Actions
grades
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Training

¢ B .&‘E?::‘: =
Image 84x84
32 8x8 CNN

Batch Norm
RelLU

o P

32 4x4 CNN
Batch Norm
RelLU

64 3x3 CNN
Batch Norm
RelLU

 Sharing convolutional layers between actor and critic 32*7*7 FC

representation

The joint network learns image representation CRITIC

Actor and critic each use the representation differently
grades

Both are 1 Fully Connected layer
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Training

e Random tracks:

- New track every game
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Training

e Random obstacles:

- Same street, new parking vehicles
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pcdocs://RAFDOCS/20578593/R

Training

* Multi-process:

- parallel games, one agent
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* PPO
- Proximal Policy
Optimization
* A2C

- Advantage Actor Critic

* ACKRT

- Actor Critic using Kronecker- |
factored Trust Region

* Mean Human

* Early Super-human

performance

e \/olatile vs Monotonic

Game Length

Game Scores
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* PPO
- Proximal Policy
Optimization
* A2C

- Advantage Actor Critic

* ACKRT

- Actor Critic using Kronecker-
factored Trust Region

* Mean Human

e Early Super-human

performance

e \/olatile vs Monotonic

Game Length

Game Scores
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* PPO
- Proximal Policy

Optimization

* A2C

- Advantage Actor Critic

* ACKRT

- Actor Critic using Kronecker-

factored Trust Region

* Mean Human

e Early Super-human

performance

* Volatile vs Monotonic
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Test drive
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https://youtu.be/Sl35GsKvkWI

Limitations

* Moving obstacles
* Traffic rules
 Steering to movement direction

* Blocking obstacles

* No U turns

—

2 ©0000®

Proprietary of Rafael — Advanced Defense Systems Ltd Ref.:




Future work

* Treating limitations
* GANs for even more realistic images
- To look like current reality

- Add rain, mud, darkness, fog, and dust

.Ir_!|_
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Future work

Control Learning

- Copy-Paste the vehicle behaviour

blr_!h
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Future work

Driving a real platform

- Test in the modelled area
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