Generative Adversarial Networks
For Image to Image Translation

Sagie Benaim
Tel Aviv University
Generative Modeling: Density Estimation

Training Data

Density Function
Generative Modeling: Sample Generation

Training Data (CelebA) Sample Generator (Karras et al, 2017)
Adversarial Nets Framework

$D(x)$ tries to be near 1

Differentiable function D

x sampled from data

D tries to make $D(G(z))$ near 0,
G tries to make $D(G(z))$ near 1

x sampled from model

Differentiable function G

Input noise z

(Goodfellow et al., 2014)
Conditional GAN
Image to Image Translation

- **Monet** ↔ **Photos**
- **Zebras** ↔ **Horses**
- **Summer** ↔ **Winter**

- **Monet** → **photo**
- **zebra** → **horse**
- **summer** → **winter**

- **photo** → **Monet**
- **horse** → **zebra**
- **winter** → **summer**

- **Photograph**
- **Monet**
- **Van Gogh**
- **Cezanne**
- **Ukiyo-e**
<table>
<thead>
<tr>
<th></th>
<th>Supervised</th>
<th>Unsupervised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimodal</td>
<td>Pix2pix, CRN, SRGAN</td>
<td>DistanceGAN, CycleGAN, DiscoGAN, DualGAN, UNIT, DTN, StarGAN, OST</td>
</tr>
<tr>
<td>Multimodal</td>
<td>pix2pixHD, BicycleGAN</td>
<td>MUNIT, Augmented CycleGAN</td>
</tr>
</tbody>
</table>
Fully Supervised: pix2pix

Conditional GAN

\[G^* = \arg \min_G \max_D \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G). \]

[Isola et al., CVPR 2017]
Isola et al., CVPR 2017
Unsupervised: Circular GANs

DiscoGAN: “Learning to Discover Cross-Domain Relations with Generative Adversarial Networks”. Kim et al. ICML’17.

Cycle-Consistent Adversarial Networks

[X]

[Mark Twain, 1903]

[Y]

[D_Y]

[Zhu et al., ICCV 2017]
Cycle Consistency Loss

\[
\|F(G(x)) - x\|_1 \quad \text{Reconstruction error}
\]

\[
\|G(F(y)) - y\|_1 \quad \text{Reconstruction error}
\]

See similar formulations [Yi et al. 2017], [Kim et al. 2017]

[Zhu et al., ICCV 2017]
Collection Style Transfer

Photograph @ Alexei Efros

Monet

Van Gogh

Cezanne

Ukiyo-e
DistanceGAN

• A pair of images of a given distance are mapped to a pair of outputs with a similar distance
• $|x_i - x_j|_1$ and $|G(x_i) - G(x_j)|_1$ are highly correlated.

![Diagram](image)

$|x_1 - x_2|_1 \sim |G(x_1) - G(x_2)|_1$

Benaim et al., NIPS 2017
Motivating distance correlations

Analysis of CycleGAN’s horse to zebra results

Benaim et al., NIPS 2017
Less Supervision: Only a single image in domain A

Many unmatched samples in domain B

+ One sample x in domain A

→ Analogue of x in B

One Shot Unsupervised Cross Domain Translation (NeurIPS 2018)
Modeling multiple possible outputs

Input

Possible outputs
BiCycleGAN [Zhu et al., NIPS 2017] (c.f. InfoGAN [Chen et al. 2016])

MAD-GAN [Ghosh et al., CVPR 2018]
MUNIT: Multimodal Translation

(a) Auto-encoding

(b) Translation

Huang et al., ECCV 2018
Sketch to Image Translation

(a) edges \leftrightarrow shoes

(b) edges \leftrightarrow handbags
Animal Image Translation

(a) house cats \rightarrow big cats
(b) big cats \rightarrow house cats
(c) house cats \rightarrow dogs
(d) dogs \rightarrow house cats
(e) big cats \rightarrow dogs
(f) dogs \rightarrow big cats

Huang et al., ECCV 2018
"Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer", ICLR 2019
Domain B

Separate Encoder

Decoder

Domain B

Common Encoder

Adversarial Loss

Domain A

Separate Encoder

0

Decoder

Domain A

Zero Loss

Reconstruction Loss

Reconstruction Loss
Adversarial Loss

Domain B

Common Encoder

Discriminator

Domain A

Is encoding from domain A or B?
Other Domains?

- Audio Separation: Training data consists of a set of samples of mixed music and an unmatched set of instrumental music.
- Given a mixed sample, wish to separate the voice from the background instrumental music.
- After mapping the audio sample to a Spectrogram, can subtract the “background” from the “mixed” sample in “pixel space”, to get the “voice” only sample.
- Samples at: https://sagiebenaim.github.io/Singing/

"Semi-Supervised Monaural Singing Voice Separation With a Masking Network Trained on Synthetic Mixtures." ICASSP 2019
Video to Video

• Use GAN to generate each frame in a video
• Use optical flow to further constrain the generator
• Samples at: https://github.com/NVIDIA/vid2vid

"High Resolution photorealistic video to video translation." NeurIPS 2018
Many More Applications

• Many other Vision Applications: Photo Enhancement, Image Dehazing
• Medical Imaging and Biology [Wolterink et al., 2017]
• Voice conversion [Fang et al., 2018, Kaneko et al., 2017]
• Cryptography [CipherGAN: Gomez et al., ICLR 2018]
• Robotics
• NLP: Unsupervised machine translation.
• NLP: Text style transfer.
• ...
Thank You! Questions?