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Deep Learning
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Visual Recognition

Autonomous Driving

What is missing?



Compositionality

Simple Concepts/Primitives Complex Concepts
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Compositionality

• Many existing vision architectures are not compositional 
• Furthermore, we still have open questions:

• What architectures help models learn compositionality? 
• How do we find the balance between compositional and black-

box models?
• We would like to develop compositional and structured models that 

leverage inductive biases into our architectures
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Compositionality in Videos
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• Actions are performed by objects and create long-range spatio-
temporal dependencies

• Composing the actions differently would lead to a different outcome



Compositionality in Videos
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Add Eggs

Season with salt and pepper

Whisk the eggs mixture

Pour mixture on pan and cook

Add cheese

Instructions:
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Object-Region Video Transformers

Arxiv 2021

Action Graphs
ICML 2021
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Towards Compositionality in Video Understanding
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Compositional Video Synthesis 

with Action Graphs

ICML 2021

Amir Bar*, Roei Herzig*,
Xiaolong Wang, Anna Rohrbach, Gal Chechik, Trevor Darrell, Amir Globerson



Our Goal

Synthesize videos of actions
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Our Goal

Our model should be able to synthesize:

• Multiple actions and objects 

• Potentially simultanious actions

• Coordinated and timed actions

Learn to synthesize videos of actions

How should we model actions?
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The Action Graph Representation
• Nodes are objects

• Edges are timed actions 

• Each action is annotated with a a start and end time

Video

Rotate, T(5, 8)

Slide, T(1, 3)

Slide, T(1, 3)

Contain, T(3, 5)

Pick Place, T(3, 5)
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Task Setting: Action-Graph-to-Video

Initial image & Layout

Yellow, Small, 
Rubber 

Cylinder

Golden Snitch

Red, Large, 
Rubber Cone

Contain, T(1, 5)

Green, Small, 
Rubber 

Cylinder

Slide, T(5, 10)Slide, T(5, 8)

a b

c d

a
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d

Input Output

Action Graph Video
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The Action Graph to Video Model

Synthesize next frame in a coarse-to-fine manner
• Action execution schedule, given Action Graph

• Given the schedule, predict how should object moves

• Then, predict how should pixels move

Red cone cover 
yellow sphere

13

a
b

d

Previous image and layout Next frame



Scheduling Actions via “Clocked Edges”
How to synchronize and schedule multiple actions?

Time Specific Action Graphs



Action Graph to Video
• Predict new scene layout given previous layout and Clocked Action Graph

• Predict the future pixels flow, and warp the previous image

• Refine the warped image via a SPADE Generator

Grey, Large, Metal, 
Cylinder

Pick place 66%

Red, Small,
Rubber Cone

Golden
snitch

Rotate, 0%

Contain,    50%

Green, Large, 
Metal Cone

Contain, 
0%

𝑙𝑡−1

𝑙𝑡

𝑣𝑡−1 𝑣𝑡

GCN

Flow + 
Warping

𝐴𝑡

Generator

𝑆

𝜔𝑡

𝑙𝑡−1

Golden 
Snitch

Grey 
Cyliner

Green 
Cone

Red 
Cone

Golden 
Snitch

Grey 
Cyliner

Green 
Cone

Red 
Cone

Concatenation Addition



Results
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Zero-shot synthesis

So far, we’ve showed that our model can synthesize the actions 

present in the training data.

Can we use this approach to synthesize more complex videos?
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Synthesizing zero-shot sequential actions
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Synthesizing zero-shot simultaneous actions
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Synthesizing new action composites
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Object-Region Video Transformers

Arxiv, 2021

Roei Herzig, Elad Ben-Avraham, Karttikeya Mangalam, 
Amir Bar, Gal Chechik, Anna Rohrbach, Trevor Darrell, Amir Globerson



Motivation
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“Picking up a coffee cup”

How can humans recognize actions in videos?
• An action is roughly composed by:

• What the objects are
• How do they interact 
• How do they move



Video Transformer Models 
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MotionFormer [4]

MViT [3]

ViViT [2]

[1] Is Space-Time Attention All You Need for Video Understanding?, ICML21
[2] ViViT: A Video Vision Transformer, ICCV21
[3] Multiscale Vision Transformers, ICCV21
[4] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurIPS21

TimeSformer [1]



Object-Centric Approach
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Hand Cup Coaster

• Objects are key to understanding actions
• Our question: How can this be captured by Video Transformer Models?



Object-Centric Approach
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Self-attention layer
𝑇𝐻𝑊 × 𝑑

𝑿: Input Features 
𝑇𝐻𝑊 × 𝑑

𝒀: Output Features 
𝑇𝐻𝑊 × 𝑑

Adding object-centric information

× 𝐿

Blocks



Objects as Transformer Tokens
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Standard 
Transformer

Our 
Model



ORViT Block
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𝑿: Patch Tokens
𝑇𝐻𝑊 × 𝑑

𝓡: Object-Region
Attention

𝕯: Object-Dynamics
Module

𝑩: Object Boxes
𝑇 × 𝑂 × 4

𝑇𝐻𝑊 × 𝑑

Refined Patch Tokens
𝑇𝐻𝑊 × 𝑑



Object-Region Attention
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• Assume access to object boxes in time

• Use these as additional “spatial regions” in 
the transformer self-attention

• Boxes are also used to extract trajectory 
information in a separate stream, and re-
integrated with the self-attention output



Object Dynamics
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Results
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Compositional and Few-Shot Action Recognition on SomethingElse

+15 improvement compared to other graph-based methods
+9.2 improvement compared to the Mformer model



Results – Standard Action Recognition
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Results
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Spatio-Temporal Action detection on AVA

+1.1 improvement compared to the MViT-B model



Visualizations
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“Moving something and something away from each other”

Box 1 Box 2 Box 3



Visualizations
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ORViT-
Mformer

Mformer

“Tearing something into two pieces”



Visualizations
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“Turning the camera left while filming something”

ORViT-
Mformer

Mformer
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Webpage: https://roeiherz.github.io/

Thank you!

https://roeiherz.github.io/

