

SceneNet: 3D Reconstruction of Videos Taken by the Crowd on GPU

Oren Tropp SagivTech Ltd.

SagivTech Snapshot

- Established in 2009 and headquartered in Israel
- Core domain expertise: GPU Computing and Computer Vision
- What we do:
 - Technology
 - Solutions
 - Projects
 - EU Research
 - Training
- GPU expertise:
 - Hard core optimizations
 - Efficient streaming for single or multiple GPU systems
 - Mobile GPUs

Mobile Crowdsourcing Video Scene SCENE Reconstruction

If you've been to a concert recently, you've probably seen how many people take videos of the event with mobile phone cameras

Each user has only one video – taken from one angle and location and of only moderate quality

The Idea behind SceneNet

Leverage the **power of** multiple mobile phone cameras

to create a high-quality 3D video experience that is

sharable via social networks

SceneNet as a FET SME collaborative project

Uni Bremen

EPFL

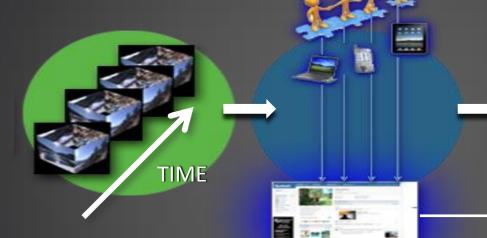
SCHIE

SCiLS

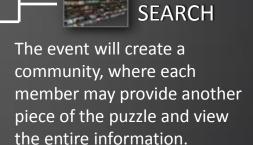
ERS

SagivTech

Creation of the 3D Video Sequence


The scene is photographed by several people using their cell phone camera

The video data is transmitted via the cellular network to a High Performance Computing server. Following time synchronization, resolution normalization and spatial registration, the several videos are merged into a 3-D video cube.

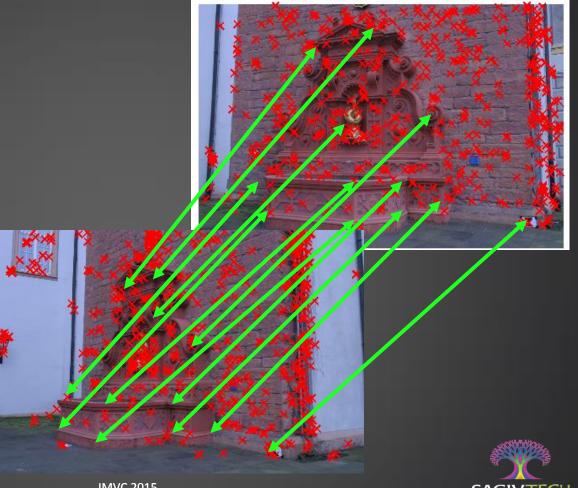


The Event Community

A 3-D video event is created.

The 3-D video event will be available on the internet as public or private event.

SHARE


IMVC 2015

Feature detection + Matching

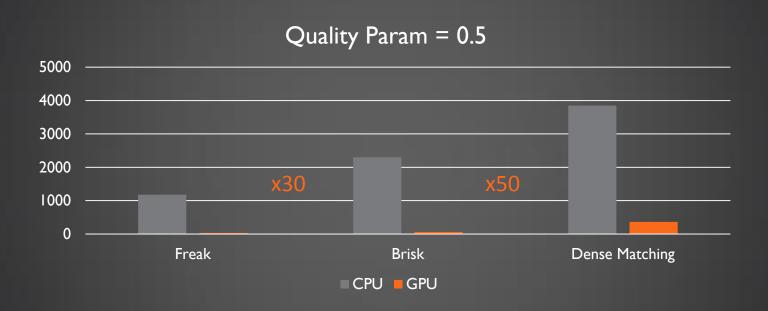
Fundamental matrix estimation

Global registration

3D model reconstruction

- Robust: works even with a minimal set of inputs
 - two viewpoints already sufficient for dense reconstruction
 - very few erroneous points

3D reconstruction



Some challanges

- Time synchronization
- Limited bandwidth
- Immense processing power required
- Bad and unstable image quality

3D model reconstruction

The Combined Model: Mobile & Cloud Computing

What about on device processing?

- For real-time processing
 - Quality
 - Features
 - Etc
- TKI for the rescue

Image Size	CPU Gold	1 CPU Thread	4 CPU Threads	GPU	Speedup
1024 x 1024	142	18	10.2	4	X2.6
2048 x 2048	740	100	50	9	X5.5

Mobile Crowdsourcing Video Scene Reconstruction

This project is partially funded by the European Union under the 7th Research Framework, programme FET-Open SME, Grant agreement no. 309169.

Thank You

For more information please contact

Nizan Sagiv

nizan@sagivtech.com

